Linux Advanced Routing & Traffic Control HOWTO

Bert Hubert
Netherlabs BV
<bert.hubert@netherlabs.nl>

Gregory Maxwell

<greg@Ilinuxpower.cx>

Remco van Mook

<remco@yvirtu.nl>

Martijn van Oosterhout

<kleptog@-cupid.suninternet.com>

Paul B Schroeder

<paulsch@us.ibm.com>

Jasper Spaans

<jasper@spaans.ds9a.nl>

Revision History
Revision 1.1 2002-07-22
DocBook Edition

A very hands-on approach to iproute2, traffic shaping and a bit of netfilter.

mailto:bert.hubert@netherlabs.nl
mailto:greg@linuxpower.cx
mailto:remco@virtu.nl
mailto:kleptog@cupid.suninternet.com
mailto:paulsch@us.ibm.com
mailto:jasper@spaans.ds9a.nl

Linux Advanced Routing & Traffic Control HOWTO

Table of Contents

2.2 . PriOrKNOWIBAQE. ... ——————————— 2
2.3. WhatLinuX CaNAO fOr YOU......ccceiiiiiiiiiicce bbbt a b s e b e e e b e s s essssssssesssnssansnenenees 3
2.4 . HOUSEKEEPINAIOIEScoiiieiiiee e 3
2.5.AccessCVS & sUbMItINQUPAALES........ccoeiiiiiiieeeee e e e ee e e e ane s e anneaneennrnnnne 3
AL T\ = 1 o T USSR UURP PP y
2.7.Layoutof thiSAOCUMENL.........ccoo s 4

Chapter 3. Introduction tO IPIOULE2.........ccoi i 5
G0t 1T YT 0 (0T U) =2 E
G |0 (0 111 (=24 (0 | PP !
BCRC Tl md (=1 (=10 [1111 (= T PP !
3.4. Exploringyour currentconfiguration..............oooooiii oot 6
3.4.2.ip ShOWSUS OUITINKSccoiiiiieeieeeeee e 6
3.4.2.ip ShOWSUS OUI IP AOAIESSES. ... uuvvuviiiiiiiiiriiriierrissseessrssssssrsesesesssessesseseseeereeeerereeeererrerrrrrree 6

3.4.3.1D SNOWSUS OUI FOULESuuuuitiiiiiiiiiiiiitiisiiesstessssssssssssssssssssssessssssessseesseesseesseeseeeeeeeaeeeeeeeaeeeeeees 7
ST N d TP

Chapter 4. Rules— routing POliCY databaSE.........cuveiiiiiiiiiiiiiiiieeieee e 10
4.1. SimplesourcePOliCY FOULING.........ccovviiiieiieeeeee e, 10
4.2. Routingfor multiple UPINKS/PIOVIAEELSuuuuieiiiiiiiiiriiirsieesrrsseresseessesreeereeeseeeerrererrrerrerrererrrree 11
A.2.0 . SPIEACCESS. ..o e e ———————————————— 12
4.2.2.L.0adbalanCing.........ccooiiiiiiii e ——— 13

B5.2. 1PN IP TUNNEING. ...eeeiieeiieeiiieee ettt e aaaeeas 14
LG T €] o = (1 [T 1= L o P 15
LoTRG 700 Y7 W o =1 T P 15

LG T2 | AV 0 VT 1= T P 16
oI O Y= P2 aTe (U AT aT=) TP 17

Chapter 6. IPv6 tunneling with Ciscoand/or BB0NE..............ooooiiiii 18
B.1. 1PV TUNNEINNG.ciiiiiiiiiiiiiiiee ittt 1€

(O ¥ o) (=Y s TRV LU 1L ToF= 1<) A o 10110 To TP 22

Chapter 9. QueueingDisciplinesfor Bandwidth ManagemenNLt...............uuuuuuiruuiiuiiiiiiiririiirrirrrr—————.— 24
9.1. QueuesandQueueingisciplinesSexPIAINEM.............uuuiuuriiuiiiiiiiiii e ————————————— 24
9.2. Simple.classlesueueindDISCIPINES ..., 25
LI o 10 T = 1= PP 2
9.2.2. TOKENBUCKETFILEEL.cevniieiei ettt e e e e e s e e s e et e e s s ebb s e s seabaeeseens 27

9.2.3.StochastidairneSTUEUEING.........covviviiiiiieieeee et 29

Linux Advanced Routing & Traffic Control HOWTO

Table of Contents

Chapter 9. QueueingDisciplinesfor Bandwidth Management

9.3. Advice for whento USEWNICh QUEUE............coooiiiiiiiii e, 30

Lo I B I =Y 11T oo PP 3(

9.5. ClassfulQUeUinNDISCIPIINEScceiiiiiiiiiieeeeeeeeee et a e e e e e e e 32
9.5.1.Flow within classfulgdiSCs& CIASSES..........ccvvviiiiiiiii e, 32
9.5.2.Theqgdiscfamily: roots.handlessiblingsandparents..........cccccceeeenurunurinurinniinniinninnn. 33
9.5.3. ThEPRIO QUISC. .. eeteieeeiiiiiitteie e e e e e e ettt e e e e e e et e e et e e e e e e e e aa e e e e eeeaeaaaabaseeeaaeessaassrssaeeeaesaaanns 34
9.5.4. ThefamouSCBQ QISC........coeieeiii e e ettt e et annaanneanrennnes 36
9.5.5.HierarchiCalTOKENBUCKELuuiiiieii et e et e e e e e s e e e s e ab e e e e eaaaas 41

9.6. Classifyingpacketawith filtErS. ... 42
9.6.1.Somesimplefiltering eXamples...........cooooiiiiiiiii i ———— 43
9.6.2.All thefiltering commandsouwill normallyneed...........cooooieeiiiiiiciiiccc s 44

9.7. TheIntermediategueueingdevice(IMQ).........coviiiiieii e, 44
9.7.1.SampleconfigUIation...........cooiiiiiiiie e bbb arrrran 45

Chapter 10.Load sharing over Multiple iINtErfACES.uuuiiiiiiiiiiiiiiiiiiiiee e e e e 47
IO T O = N 4

10.2.0therpoSSIDIlItIES.....c.ceviiiiiieeiieeeeee 48
Chapter 11. Netfilter & iproute — marking PACKELS.........cccoiiiiiiiii 49

Chapter 12. Advancedfilters for (re=)classifyingpackets............cooovviiiiiiii . 50
2 R N TS Y U1 T2 o] P LT 1 T PP 50

I L 1 T2 Y 1Tt (o 51
A A €T A 1=] =] Y=Y [SYo1 () =T 52
12.1.3.SPECIfICSEIECIOLS.cceiieeeeeeeeeee e 53
A 1 A TSY (010 | (=X 0l = oo L) T 53
12.3. POlCINGTIEIS. ... ———————————————— 54
12.3.1.WAYSIO PONCE.eveiiiiiiieiieeeeeee ettt 54
R I @ A=Y 10 411 7= (ot 10 1= 55
TS T = V0.1][55
12.4.Hashindfilters for very fastmasSiVEfIltErNG.uvvirieiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeee e 55

Chapter 13. Kernel NEtWOrK PArAMETIEIS.uuuuuuuuuuuuuuuurtuuutuuutaaeeerrearearrerrrrerrerrreraessressereraeereerraerrerrrrr—e—.. 58
13.1. REVEISEPANFIEIING. . vvvveriiiiiiiiieeieee et e e e e e e e e e e e e e e e et e e e e e e e e e e e e e aaaaaaaaaaeas 58
13.2.0DSCUIESEIINGS.coeeeieeeee e ————————— 59

13.2.1.GENEIICIPVA ...ccceeeeeeeeeeeeeeeeeee et 59
13.2.2. PEIAEVICESEIINGS. .vvvvrrrrrrrrrirrrrerreerrrerreereeeeeererrrrrrrerrr et rrettettttttttttttetttaataaattaataaaaaaaaaaaaaeeees 62
RS2 T AN 1= 1] 0T oo 1Ton PP 63
S o 1N 1T Y= 10T 1 PP 64

I I = V= U TS =] T oY= Lo = ST 66

14.2.Clark=Shenker=ZhanalgorithmM(CSZ)..........uuuuuuuuuuuiiiuiiniiiiiiiriirrierrerererrrrre—————————————————. 66
I B 1SN Y 1N 3 TR TTRRTTRIT 6

Linux Advanced Routing & Traffic Control HOWTO

Table of Contents

Chapter 14. Advanced& lesscommongueueingdisciplines
14.3.3.DifferentiatedServicegQUIdEliNES.............oovviiiiiiiiiiiee e, 67

14.3.4. WOrking With DSIM@IKuuuuuiuuiiuuiiiuiiiueieteiruerrresrersrrerrreeee ...t 68
14.3.5. HOW SCH DSIMARKWOIKSve ettt ettt ettt e et et e e e e e e e e e e e e e e eeeeeeennnn 68

14.3.6.TC_INDEX Filter
0 T =TT o o 1 o S 71

14.4.1.Parameterf USAQE. . .uuuueeieerunteeetttteatettuseesatnaeeseetaaeseetsnaerestnaaeeetnnaereessaeteerssaeresnnaaeees 71
14.5.RandomEarly DeteCtiON(RED).........uuuuuiuiriiiiiiiiniutrtirrrieserrrsrsssrrrrressrereee—e—————————————————————. 71
14.6.GenericRandomEarly DeteCHION..........cooeeeiiei i 72
AL O N Y I =T 0 0TV | P2 Lo 72

14.8.WeightedROUNARODIN(MRR).ttt b et e b essessssssssssssesseesseeseees 72

(O T o) =Y A RS T @0 To (oY PP 7
15.1.Runningmultiple siteswith differentSLAS.........oooviiiiiii 74
15.2.Protectingyour hostfrom SYN flOOAS........uuuuuiiuiiiiiiiiiiiiiiiiiiiiiiiieiiiriiesiesesseseeesreeseeereeereeeee———————— 75
15.3.Ratelimit ICMP t0 preventdDOS ... ——— 76
15.4.Prioritizing interactivetraffiC..............ccccc s 76
15.5.Transparentveb—cachinaisingnetfilter, iproute2 ipchainsandsquid..............cccccoevvieeeeenn... 77

15.5.1.Traffic flow diagramafterimplementation..............ccccoeeeeeeeii e, 80
15.6.CircumventingPathMTU Discoveryissueswith perrouteMTU Settings.........ccoeeeeeeieecnnnnnnns 80
I ST Yo 11T 81

15.7.CircumventingPathMTU Discoveryissuesvith MSS Clamping(for ADSL. cable PPPoE

& PPIPUSEIS) ..o ——— 8.

15.8.TheUltimate Traffic Conditioner:Low Latency.FastUp & Downloads..........ccccccceevvveevennenn.. 82
15.8.1.Why it doesn'twork well by default...........cooooviiii 83
15.8.2.TheactualsCript(CBQ)......cooiiiiiie oo e oo oo nnnannasnnnnnnes 84
15.8.3.TheactualsCript (HTB)......ccooiiiiiee e 86

15.9.Ratelimiting asinglehoStor NEMASK..........cciiiiiieiiiie e rrrrnrernnee 87

Chapter 16.Building bridges. and pseudo—bridgeswith ProxXy ARP.........ccccciiiiiiiuuurinniiniiineinniinnennnennnennn. 89
16.1. Stateof bridgingandiptabIES........ ..o —— i ————————aaaa—eaaaraaraaareanes 89
G2 =T o [o TTaTo = TaTo £ST =T o 10T o PP 89
16.3.Pseudo—bridgedith ProXY—ARP........ ...t e reesssesseerreereeeraerrrereees 89

16.3. 1. ARP & PrOXY=ARP oo e e e e e e aaaeaas 90
LGRS 7 12T o] =T 0 T=Y 1) (1o 1 PP 90

Chapter 17. Dynamic routing — OSPEANA BGRP..........uuuuiiuiiiiiiiiiiiiiiiiiiiiisiieserrereereeeseeereeereern 92

Chapter 18. Other POSSIDIIILIES ... uuvveiiiiiiiiiiieii e e e e e e e e e e e e e e e e e 93

(O T o1 (=l R IR U [(Y=Y == Lo 11T PP 95

Chapter 20. ACKNOWIEAOEMIENTSciiiiiiiiiieee s e aaeeabea s et eaeeeseessaessssssesssssssssssssssensanesnnnnnes 96

Chapter 1. Dedication

This document is dedicated to lots of people, and is my attempt to do something back. To list but a few:

* Rusty Russell

» Alexey N. Kuznetsov

» The good folks from Google
* The staff of Casema Internet

Chapter 1. Dedication 1

Chapter 2. Introduction

Welcome, gentle reader.

This document hopes to enlighten you on how to do more with Linux 2.2/2.4 routing. Unbeknownst to most
users, you already run tools which allow you to do spectacular things. Commands like route and ifconfig are
actually very thin wrappers for the very powerful iproute2 infrastructure.

I hope that this HOWTO will become as readable as the ones by Rusty Russell of (amongst other things)
netfilter fame.

You can always reach us by writing to the HOWTO team. However, please consider posting to the mailing li
(see the relevant section) if you have questions which are not directly related to this HOWTO. We are no fre
helpdesk, but we often will answer questions asked on the list.

Before losing your way in this HOWTO, if all you want to do is simple traffic shaping, skip everything and
head to the Other possibilities chapter, and read about CBQ.init.

2.1. Disclaimer & License

This document is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY: ; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

In short, if your STM-64 backbone breaks down and distributes pornography to your most esteemed
customers — it's never our fault. Sorry.

Copyright (c) 2002 by bert hubert, Gregory Maxwell, Martijn van Oosterhout, Remco van Mook, Paul B.
Schroeder and others. This material may be distributed only subject to the terms and conditions set forth in
Open Publication License, v1.0 or later (the latest version is presently available at
http://www.opencontent.org/openpub/).

Please freely copy and distribute (sell or give away) this document in any format. It's requested that
corrections and/or comments be forwarded to the document maintainer.

It is also requested that if you publish this HOWTO in hardcopy that you send the authors some samples for
"review purposes" :-)

2.2. Prior knowledge

As the title implies, this is the "Advanced" HOWTO. While by no means rocket science, some prior
knowledge is assumed.

Here are some other references which might help teach you more:

Rusty Russell's networking—concepts—HOWTO
Very nice introduction, explaining what a network is, and how it is connected to other networks.

Linux Networking-HOWTO (Previously the Net—-3 HOWTO)
Great stuff, although very verbose. It teaches you a lot of stuff that's already configured if you are

Chapter 2. Introduction 2

mailto:HOWTO@ds9a.nl
http://netfilter.samba.org/unreliable-guides/networking-concepts-HOWTO/index.html

Linux Advanced Routing & Traffic Control HOWTO

able to connect to the Internet. Should be located in /usr/doc/HOWTO/NET3-4-HOWTO.txt but
can be also be found online.

2.3. What Linux can do for you

A small list of things that are possible:

 Throttle bandwidth for certain computers

 Throttle bandwidth TO certain computers

« Help you to fairly share your bandwidth

 Protect your network from DoS attacks

 Protect the Internet from your customers

« Multiplex several servers as one, for load balancing or enhanced availability

* Restrict access to your computers

 Limit access of your users to other hosts

« Do routing based on user id (yes!), MAC address, source IP address, port, type of service, time of dz
or content

Currently, not many people are using these advanced features. This is for several reasons. While the provid
documentation is verbose, it is not very hands—on. Traffic control is almost undocumented.

2.4. Housekeeping notes

There are several things which should be noted about this document. While | wrote most of it, | really don't
want it to stay that way. | am a strong believer in Open Source, so | encourage you to send feedback, updat
patches etcetera. Do not hesitate to inform me of typos or plain old errors. If my English sounds somewhat
wooden, please realize that I'm not a native speaker. Feel free to send suggestions.

If you feel to you are better qualified to maintain a section, or think that you can author and maintain new
sections, you are welcome to do so. The SGML of this HOWTO is available via CVS, | very much envision
more people working on it.

In aid of this, you will find lots of FIXME notices. Patches are always welcome! Wherever you find a

FIXME, you should know that you are treading in unknown territory. This is not to say that there are no error
elsewhere, but be extra careful. If you have validated something, please let us know so we can remove the
FIXME notice.

About this HOWTO, | will take some liberties along the road. For example, | postulate a 10Mbit Internet
connection, while I know full well that those are not very common.

2.5. Access, CVS & submitting updates

The canonical location for the HOWTQ_is here.

We now have anonymous CVS access available to the world at large. This is good in a number of ways. Yo
can easily upgrade to newer versions of this HOWTO and submitting patches is no work at all.

Furthermore, it allows the authors to work on the source independently, which is good too.

Chapter 2. Introduction 3

http://www.linuxports.com/howto/networking
http://www.ds9a.nl/lartc

Linux Advanced Routing & Traffic Control HOWTO

$ export CVSROOT=:pserver:anon@outpost.ds9a.nl:/var/cvsroot
$ cvs login

CVS password: [enter 'cvs' (without 's)]

$ cvs co 2.4routing

cvs server: Updating 2.4routing

U 2.4routing/2.4routing.sgml

If you spot an error, or want to add something, just fix it locally, and run cvs diff —u, and send the result
off to us.

A Makefile is supplied which should help you create postscript, dvi, pdf, html and plain text. You may need t
install docbook, docbook-utils, ghostscript and tetex to get all formats.

2.6. Mailing list

The authors receive an increasing amount of mail about this HOWTO. Because of the clear interest of the
community, it has been decided to start a mailinglist where people can talk to each other about Advanced
Routing and Traffic Control. You can subscribe to the list here.

It should be pointed out that the authors are very hesitant of answering questions not asked on the list. We
would like the archive of the list to become some kind of knowledge base. If you have a question, please
search the archive, and then post to the mailinglist.

2.7. Layout of this document

We will be doing interesting stuff almost immediately, which also means that there will initially be parts that
are explained incompletely or are not perfect. Please gloss over these parts and assume that all will become
clear.

Routing and filtering are two distinct things. Filtering is documented very well by Rusty's HOWTOs,
available here:

» Rusty's Remarkably Unreliable Guides

We will be focusing mostly on what is possible by combining netfilter and iproute2.

Chapter 2. Introduction 4

http://mailman.ds9a.nl/mailman/listinfo/lartc
http://netfilter.samba.org/unreliable-guides/

Chapter 3. Introduction to iproute2
3.1. Why iproute2?

Most Linux distributions, and most UNIX's, currently use the venerable arp, ifconfig and route commands.
While these tools work, they show some unexpected behaviour under Linux 2.2 and up. For example, GRE
tunnels are an integral part of routing these days, but require completely different tools.

With iproute2, tunnels are an integral part of the tool set.

The 2.2 and above Linux kernels include a completely redesigned network subsystem. This new networking
code brings Linux performance and a feature set with little competition in the general OS arena. In fact, the
new routing, filtering, and classifying code is more featureful than the one provided by many dedicated
routers and firewalls and traffic shaping products.

As new networking concepts have been invented, people have found ways to plaster them on top of the
existing framework in existing OSes. This constant layering of cruft has lead to networking code that is filled
with strange behaviour, much like most human languages. In the past, Linux emulated SunOS's handling of
many of these things, which was not ideal.

This new framework makes it possible to clearly express features previously beyond Linux's reach.

3.2. iproute2 tour

Linux has a sophisticated system for bandwidth provisioning called Traffic Control. This system supports
various method for classifying, prioritizing, sharing, and limiting both inbound and outbound traffic.

We'll start off with a tiny tour of iproute2 possibilities.

3.3. Prerequisites

You should make sure that you have the userland tools installed. This package is called ‘iproute’ on both
RedHat and Debian, and may otherwise be found at

You can also try here for the latest version.

Some parts of iproute require you to have certain kernel options enabled. It should also be noted that all
releases of RedHat up to and including 6.2 come without most of the traffic control features in the default
kernel.

RedHat 7.2 has everything in by default.

Also make sure that you have netlink support, should you choose to roll your own kernel. Iproute2 needs it.

Chapter 3. Introduction to iproute2 5

ftp://ftp.inr.ac.ru/ip-routing/iproute2-current.tar.gz

Linux Advanced Routing & Traffic Control HOWTO
3.4. Exploring your current configuration

This may come as a surprise, but iproute?2 is already configured! The current commands ifconfig and route
are already using the advanced syscalls, but mostly with very default (ie. boring) settings.

The ip tool is central, and we'll ask it to display our interfaces for us.

3.4.1. ip shows us our links

[ahu@home ahu]$ ip link list

1: lo: <LOOPBACK,UP> mtu 3924 qdisc noqueue
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

2: dummy: <BROADCAST,NOARP> mtu 1500 qgdisc noop
link/ether 00:00:00:00:00:00 brd ff:ff:ff.ff:ff.ff

3: eth0: <BROADCAST,MULTICAST,PROMISC,UP> mtu 1400 qdisc pfifo_fast glen 100
link/ether 48:54:€8:2a:47:16 brd ff.ff:ff.ff:ff.ff

4: ethl: <BROADCAST,MULTICAST,PROMISC,UP> mtu 1500 qdisc pfifo_fast glen 100
link/ether 00:€0:4¢:39:24:78 brd ff:ff.ff:ff.ff:ff

3764: ppp0: <POINTOPOINT,MULTICAST,NOARP,UP> mtu 1492 qdisc pfifo_fast glen 10
link/ppp

Your mileage may vary, but this is what it shows on my NAT router at home. I'll only explain part of the

output as not everything is directly relevant.

We first see the loopback interface. While your computer may function somewhat without one, I'd advise
against it. The MTU size (Maximum Transfer Unit) is 3924 octets, and it is not supposed to queue. Which
makes sense because the loopback interface is a figment of your kernel's imagination.

I'll skip the dummy interface for now, and it may not be present on your computer. Then there are my two
physical network interfaces, one at the side of my cable modem, the other one serves my home ethernet
segment. Furthermore, we see a ppp0 interface.

Note the absence of IP addresses. iproute disconnects the concept of 'links' and 'IP addresses'. With IP
aliasing, the concept of 'the' IP address had become quite irrelevant anyhow.

It does show us the MAC addresses though, the hardware identifier of our ethernet interfaces.

3.4.2. ip shows us our IP addresses

[ahu@home ahu]$ ip address show

1: lo: <LOOPBACK,UP> mtu 3924 gdisc noqueue
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 brd 127.255.255.255 scope host lo

2: dummy: <BROADCAST,NOARP> mtu 1500 qdisc noop
link/ether 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff

3: eth0: <BROADCAST,MULTICAST,PROMISC,UP> mtu 1400 qdisc pfifo_fast glen 100
link/ether 48:54:€8:2a:47:16 brd ff:ff:ff:ff:ff.ff
inet 10.0.0.1/8 brd 10.255.255.255 scope global ethO

4: ethl: <BROADCAST,MULTICAST,PROMISC,UP> mtu 1500 qdisc pfifo_fast glen 100
link/ether 00:€0:4¢:39:24:78 brd ff:ff:ff:ff.ff:ff

3764: ppp0: <POINTOPOINT,MULTICAST,NOARP,UP> mtu 1492 qdisc pfifo_fast glen 10

link/ppp
inet 212.64.94.251 peer 212.64.94.1/32 scope global ppp0

This contains more information. It shows all our addresses, and to which cards they belong. 'inet' stands for

Chapter 3. Introduction to iproute2 6

Linux Advanced Routing & Traffic Control HOWTO

Internet (IPv4). There are lots of other address families, but these don't concern us right now.

Let's examine ethO somewhat closer. It says that it is related to the inet address '10.0.0.1/8'. What does this
mean? The /8 stands for the number of bits that are in the Network Address. There are 32 bits, so we have '
bits left that are part of our network. The first 8 bits of 10.0.0.1 correspond to 10.0.0.0, our Network Address
and our netmask is 255.0.0.0.

The other bits are connected to this interface, so 10.250.3.13 is directly available on eth0, as is 10.0.0.1 for
example.

With pppO, the same concept goes, though the numbers are different. Its address is 212.64.94.251, without
subnet mask. This means that we have a point—to—point connection and that every address, with the except
of 212.64.94.251, is remote. There is more information, however. It tells us that on the other side of the link
there is, yet again, only one address, 212.64.94.1. The /32 tells us that there are no 'network bits'.

It is absolutely vital that you grasp these concepts. Refer to the documentation mentioned at the beginning
this HOWTO if you have trouble.

You may also note 'qdisc’, which stands for Queueing Discipline. This will become vital later on.

3.4.3. ip shows us our routes

Well, we now know how to find 10.x.y.z addresses, and we are able to reach 212.64.94.1. This is not enoug
however, so we need instructions on how to reach the world. The Internet is available via our ppp connectio
and it appears that 212.64.94.1 is willing to spread our packets around the world, and deliver results back tc
us.

[ahu@home ahu]$ ip route show

212.64.94.1 dev ppp0 proto kernel scope link src 212.64.94.251
10.0.0.0/8 dev ethO proto kernel scope link src 10.0.0.1
127.0.0.0/8 dev lo scope link

default via 212.64.94.1 dev ppp0

This is pretty much self explanatory. The first 4 lines of output explicitly state what was already implied by ip
address show, the last line tells us that the rest of the world can be found via 212.64.94.1, our default
gateway. We can see that it is a gateway because of the word via, which tells us that we need to send pack
to 212.64.94.1, and that it will take care of things.

For reference, this is what the old route utility shows us:

[ahu@home ahu]$ route —n

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use
Iface

212.64.94.1 0.0.0.0 255.255.255.255 UH 0 O 0 ppp0
10.0.0.0 0.0.0.0 255.0.0.0 u o0 O 0 ethO
127.0.0.0 0.0.0.0 255.0.0.0 u 0 O Olo

0.0.0.0 212.64.94.1 0.0.0.0 UuG 0 O 0 ppp0

Chapter 3. Introduction to iproute2 7

Linux Advanced Routing & Traffic Control HOWTO
3.5. ARP

ARP is the Address Resolution Protocol as described in REC 826. ARP is used by a networked machine to
resolve the hardware location/address of another machine on the same local network. Machines on the Inte
are generally known by their names which resolve to IP addresses. This is how a machine on the foo.com
network is able to communicate with another machine which is on the bar.net network. An IP address, thoug
cannot tell you the physical location of a machine. This is where ARP comes into the picture.

Let's take a very simple example. Suppose | have a network composed of several machines. Two of the
machines which are currently on my network are foo with an IP address of 10.0.0.1 and bar with an IP addre
of 10.0.0.2. Now foo wants to ping bar to see that he is alive, but alas, foo has no idea where bar is. So whe
foo decides to ping bar he will need to send out an ARP request. This ARP request is akin to foo shouting o
on the network "Bar (10.0.0.2)! Where are you?" As a result of this every machine on the network will hear
foo shouting, but only bar (10.0.0.2) will respond. Bar will then send an ARP reply directly back to foo which
is akin bar saying, "Foo (10.0.0.1) | am here at 00:60:94:E9:08:12." After this simple transaction that's used
locate his friend on the network, foo is able to communicate with bar until he (his arp cache) forgets where b
is (typically after 15 minutes on Unix).

Now let's see how this works. You can view your machines current arp/neighbor cache/table like so:

[root@espa041 /home/src/iputils]# ip neigh show
9.3.76.42 dev ethO lladdr 00:60:08:3f:€9:f9 nud reachable
9.3.76.1 dev ethO lladdr 00:06:29:21:73:¢c8 nud reachable

As you can see my machine espa041 (9.3.76.41) knows where to find espa042 (9.3.76.42) and espagate
(9.3.76.1). Now let's add another machine to the arp cache.

[root@espa041 /home/paulsch/.gnome-desktop]# ping —c 1 espa043
PING espa043.austin.ibm.com (9.3.76.43) from 9.3.76.41 : 56(84) bytes of data.
64 bytes from 9.3.76.43: icmp_seq=0 ttI=255 time=0.9 ms

——— espa043.austin.ibm.com ping statistics ———
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 0.9/0.9/0.9 ms

[root@espa041 /home/src/iputils]# ip neigh show
9.3.76.43 dev ethO lladdr 00:06:29:21:80:20 nud reachable
9.3.76.42 dev ethO lladdr 00:60:08:3f:€9:f9 nud reachable
9.3.76.1 dev ethO lladdr 00:06:29:21:73:¢c8 nud reachable

As a result of espa041 trying to contact espa043, espa043's hardware address/location has now been adde
the arp/neighbor cache. So until the entry for espa043 times out (as a result of no communication between t
two) espa041 knows where to find espa043 and has no need to send an ARP request.

Now let's delete espa043 from our arp cache:

[root@espa041 /home/src/iputils]# ip neigh delete 9.3.76.43 dev ethO
[root@espa041 /home/src/iputils]# ip neigh show

9.3.76.43 dev eth0 nud failed

9.3.76.42 dev ethO lladdr 00:60:08:3f:€9:f9 nud reachable

9.3.76.1 dev eth0 lladdr 00:06:29:21:73:¢8 nud stale

Chapter 3. Introduction to iproute2 8

http://www.faqs.org/rfcs/rfc826.html

Linux Advanced Routing & Traffic Control HOWTO

Now espa041 has again forgotten where to find espa043 and will need to send another ARP request the ne
time he needs to communicate with espa043. You can also see from the above output that espagate (9.3.7¢
has been changed to the "stale" state. This means that the location shown is still valid, but it will have to be

confirmed at the first transaction to that machine.

Chapter 3. Introduction to iproute2 9

Chapter 4. Rules - routing policy database

If you have a large router, you may well cater for the needs of different people, who should be served
differently. The routing policy database allows you to do this by having multiple sets of routing tables.

If you want to use this feature, make sure that your kernel is compiled with the "IP: advanced router" and "IF
policy routing" features.

When the kernel needs to make a routing decision, it finds out which table needs to be consulted. By defaul
there are three tables. The old 'route' tool modifies the main and local tables, as does the ip tool (by default)

The default rules:

[ahu@home ahu]$ ip rule list
0: from all lookup local
32766: from all lookup main
32767: from all lookup default

This lists the priority of all rules. We see that all rules apply to all packets (‘from all'). We've seen the 'main’
table before, it is output by ip route Is, but the 'local' and 'default' table are new.

If we want to do fancy things, we generate rules which point to different tables which allow us to override
system wide routing rules.

For the exact semantics on what the kernel does when there are more matching rules, see Alexey's ip—cref
documentation.

4.1. Simple source policy routing

Let's take a real example once again, | have 2 (actually 3, about time | returned them) cable modems,
connected to a Linux NAT (‘'masquerading’) router. People living here pay me to use the Internet. Suppose c
of my house mates only visits hotmail and wants to pay less. This is fine with me, but they'll end up using th
low-end cable modem.

The 'fast' cable modem is known as 212.64.94.251 and is a PPP link to 212.64.94.1. The 'slow' cable model
is known by various ip addresses, 212.64.78.148 in this example and is a link to 195.96.98.253.

The local table:

[ahu@home ahu]$ ip route list table local

broadcast 127.255.255.255 dev lo proto kernel scope link src 127.0.0.1
local 10.0.0.1 dev ethO proto kernel scope host src 10.0.0.1

broadcast 10.0.0.0 dev ethO proto kernel scope link src 10.0.0.1

local 212.64.94.251 dev ppp0 proto kernel scope host src 212.64.94.251
broadcast 10.255.255.255 dev ethO proto kernel scope link src 10.0.0.1
broadcast 127.0.0.0 dev lo proto kernel scope link src 127.0.0.1

local 212.64.78.148 dev ppp2 proto kernel scope host src 212.64.78.148
local 127.0.0.1 dev lo proto kernel scope host src 127.0.0.1

local 127.0.0.0/8 dev lo proto kernel scope host src 127.0.0.1

Lots of obvious things, but things that need to be specified somewhere. Well, here they are. The default tabl

Chapter 4. Rules - routing policy database 10

Linux Advanced Routing & Traffic Control HOWTO

is empty.

Let's view the 'main’ table:

[ahu@home ahu]$ ip route list table main

195.96.98.253 dev ppp2 proto kernel scope link src 212.64.78.148
212.64.94.1 dev ppp0 proto kernel scope link src 212.64.94.251
10.0.0.0/8 dev ethO proto kernel scope link src 10.0.0.1
127.0.0.0/8 dev lo scope link

default via 212.64.94.1 dev ppp0

We now generate a new rule which we call 'John', for our hypothetical house mate. Although we can work
with pure numbers, it's far easier if we add our tables to /etc/iproute2/rt_tables.

echo 200 John >> /etc/iproute2/rt_tables
ip rule add from 10.0.0.10 table John
#ip rule Is

0: from all lookup local

32765: from 10.0.0.10 lookup John
32766: from all lookup main

32767: from all lookup default

Now all that is left is to generate John's table, and flush the route cache:

ip route add default via 195.96.98.253 dev ppp2 table John
ip route flush cache

And we are done. It is left as an exercise for the reader to implement this in ip—up.

4.2. Routing for multiple uplinks/providers

A common configuration is the following, in which there are two providers that connect a local network (or
even a single machine) to the big Internet.

+ + /
I |
+ + Provider 1 +———————
_ I I |/
I\ + } t } [
_ | ift | /
/ Vo I I
| Local network ————- + Linux router | | Internet
. 1 I I
] | if2 | \
\ + 4+ A
I I |\
+ + Provider 2 +——————-
I I
+ + \

There are usually two questions given this setup.

Chapter 4. Rules - routing policy database 11

Linux Advanced Routing & Traffic Control HOWTO

4.2.1. Split access

The first is how to route answers to packets coming in over a particular provider, say Provider 1, back out
again over that same provider.

Let us first set some symbolical names. Let $IF1 be the name of the first interface (if1 in the picture above)
and $IF2 the name of the second interface. Then let $IP1 be the IP address associated with $IF1 and $IP2 1
IP address associated with $IF2. Next, let $P1 be the IP address of the gateway at Provider 1, and $P2 the
address of the gateway at provider 2. Finally, let $P1_NET be the IP network $P1 is in, and $P2_NET the IF
network $P2 is in.

One creates two additional routing tables, say T1 and T2. These are added in /etc/iproute2/rt_tables. Then \
set up routing in these tables as follows:

ip route add $P1_NET dev $IF1 src $IP1 table T1
ip route add default via $P1 table T1
ip route add $P2_NET dev $IF2 src $IP2 table T2
ip route add default via $P2 table T2

Nothing spectacular, just build a route to the gateway and build a default route via that gateway, as you wou
do in the case of a single upstream provider, but put the routes in a separate table per provider. Note that th
network route suffices, as it tells you how to find any host in that network, which includes the gateway, as
specified above.

Next you set up the main routing table. It is a good idea to route things to the direct neighbour through the
interface connected to that neighbour. Note the “src' arguments, they make sure the right outgoing IP addre:
is chosen.

ip route add $P1_NET dev $IF1 src $IP1
ip route add $P2_NET dev $IF2 src $IP2

Then, your preference for default route:

ip route add default via $P1

Next, you set up the routing rules. These actually choose what routing table to route with. You want to make
sure that you route out a given interface if you already have the corresponding source address:

ip rule add from $IP1 table T1
ip rule add from $IP2 table T2

This set of commands makes sure all answers to traffic coming in on a particular interface get answered frol
that interface.

Now, this is just the very basic setup. It will work for all processes running on the router itself, and for the
local network, if it is masqueraded. If it is not, then you either have IP space from both providers or you are
going to want to masquerade to one of the two providers. In both cases you will want to add rules selecting
which provider to route out from based on the IP address of the machine in the local network.

Chapter 4. Rules - routing policy database 12

Linux Advanced Routing & Traffic Control HOWTO

4.2.2. Load balancing

The second question is how to balance traffic going out over the two providers. This is actually not hard if yc
already have set up split access as above.

Instead of choosing one of the two providers as your default route, you now set up the default route to be a
multipath route. In the default kernel this will balance routes over the two providers. It is done as follows
(once more building on the example in the section on split-access):

ip route add default scope global nexthop via $P1 dev $IF1 weight 1 \
nexthop via $P2 dev $IF2 weight 1

This will balance the routes over both providers. The weight parameters can be tweaked to favor one provid
over the other.

Note that balancing will not be perfect, as it is route based, and routes are cached. This means that routes t
often—used sites will always be over the same provider.

Furthermore, if you really want to do this, you probably also want to look at Julian Anastasov's patches at

http://www.linuxvirtualserver.org/~julian/#routes , Julian's route patch page. They will make things nicer to
work with.

Chapter 4. Rules - routing policy database 13

http://www.linuxvirtualserver.org/~julian/#routes

Chapter 5. GRE and other tunnels

There are 3 kinds of tunnels in Linux. There's IP in IP tunneling, GRE tunneling and tunnels that live outside
the kernel (like, for example PPTP).

5.1. A few general remarks about tunnels:

Tunnels can be used to do some very unusual and very cool stuff. They can also make things go horribly
wrong when you don't configure them right. Don't point your default route to a tunnel device unless you knov
EXACTLY what you are doing :-). Furthermore, tunneling increases overhead, because it needs an extra se
IP headers. Typically this is 20 bytes per packet, so if the normal packet size (MTU) on a network is 1500
bytes, a packet that is sent through a tunnel can only be 1480 bytes big. This is not necessarily a problem, &
be sure to read up on IP packet fragmentation/reassembly when you plan to connect large networks with
tunnels. Oh, and of course, the fastest way to dig a tunnel is to dig at both sides.

5.2. IP in IP tunneling

This kind of tunneling has been available in Linux for a long time. It requires 2 kernel modules, ipip.o and
new_tunnel.o.

Let's say you have 3 networks: Internal networks A and B, and intermediate network C (or let's say, Internet
So we have network A:

network 10.0.1.0
netmask 255.255.255.0
router 10.0.1.1

The router has address 172.16.17.18 on network C.

and network B:

network 10.0.2.0
netmask 255.255.255.0
router 10.0.2.1

The router has address 172.19.20.21 on network C.

As far as network C is concerned, we assume that it will pass any packet sent from A to B and vice versa. Y
might even use the Internet for this.

Here's what you do:

First, make sure the modules are installed:

insmod ipip.o
insmod new_tunnel.o

Then, on the router of network A, you do the following:

Chapter 5. GRE and other tunnels 14

Linux Advanced Routing & Traffic Control HOWTO

ifconfig tunl0 10.0.1.1 pointopoint 172.19.20.21
route add —net 10.0.2.0 netmask 255.255.255.0 dev tunlO

And on the router of network B:

ifconfig tunl0 10.0.2.1 pointopoint 172.16.17.18
route add —net 10.0.1.0 netmask 255.255.255.0 dev tunlO

And if you're finished with your tunnel:

|ifconfig tunlO down |

Presto, you're done. You can't forward broadcast or IPv6 traffic through an IP-in—IP tunnel, though. You jus
connect 2 IPv4 networks that normally wouldn't be able to talk to each other, that's all. As far as compatibilit
goes, this code has been around a long time, so it's compatible all the way back to 1.3 kernels. Linux IP—in-
tunneling doesn't work with other Operating Systems or routers, as far as | know. It's simple, it works. Use it
if you have to, otherwise use GRE.

5.3. GRE tunneling

GRE is a tunneling protocol that was originally developed by Cisco, and it can do a few more things than
IP-in—IP tunneling. For example, you can also transport multicast traffic and IPv6 through a GRE tunnel.

In Linux, you'll need the ip_gre.o module.

5.3.1. IPv4 Tunneling

Let's do IPv4 tunneling first:
Let's say you have 3 networks: Internal networks A and B, and intermediate network C (or let's say, Internet

So we have network A:

network 10.0.1.0
netmask 255.255.255.0
router 10.0.1.1

The router has address 172.16.17.18 on network C. Let's call this network neta (ok, hardly original)

and network B:

network 10.0.2.0
netmask 255.255.255.0
router 10.0.2.1

The router has address 172.19.20.21 on network C. Let's call this network netb (still not original)

As far as network C is concerned, we assume that it will pass any packet sent from A to B and vice versa.
How and why, we do not care.

On the router of network A, you do the following:

Chapter 5. GRE and other tunnels 15

Linux Advanced Routing & Traffic Control HOWTO

ip tunnel add netb mode gre remote 172.19.20.21 local 172.16.17.18 ttl 255
ip link set netb up

ip addr add 10.0.1.1 dev netb

ip route add 10.0.2.0/24 dev netb

Let's discuss this for a bit. In line 1, we added a tunnel device, and called it netb (which is kind of obvious
because that's where we want it to go). Furthermore we told it to use the GRE protocol (mode gre), that the
remote address is 172.19.20.21 (the router at the other end), that our tunneling packets should originate frol
172.16.17.18 (which allows your router to have several IP addresses on network C and let you decide whick
one to use for tunneling) and that the TTL field of the packet should be set to 255 (ttl 255).

The second line enables the device.

In the third line we gave the newly born interface netb the address 10.0.1.1. This is OK for smaller networks
but when you're starting up a mining expedition (LOTS of tunnels), you might want to consider using anothe
IP range for tunneling interfaces (in this example, you could use 10.0.3.0).

In the fourth line we set the route for network B. Note the different notation for the netmask. If you're not
familiar with this notation, here's how it works: you write out the netmask in binary form, and you count all
the ones. If you don't know how to do that, just remember that 255.0.0.0 is /8, 255.255.0.0 is /16 and
255.255.255.0 is /24. Oh, and 255.255.254.0 is /23, in case you were wondering.

But enough about this, let's go on with the router of network B.

ip tunnel add neta mode gre remote 172.16.17.18 local 172.19.20.21 ttl 255
ip link set neta up

ip addr add 10.0.2.1 dev neta

ip route add 10.0.1.0/24 dev neta

And when you want to remove the tunnel on router A:

ip link set netb down
ip tunnel del netb

Of course, you can replace netb with neta for router B.

5.3.2. IPv6 Tunneling
See Section 6 for a short bit about IPv6 Addresses.
On with the tunnels.

Let's assume that you have the following IPv6 network, and you want to connect it to 6bone, or a friend.

|Network 3ffe:406:5:1:5:a:2:1/96 |

Your IPv4 address is 172.16.17.18, and the 6bone router has IPv4 address 172.22.23.24.

ip tunnel add sixbone mode sit remote 172.22.23.24 local 172.16.17.18 ttl 255
ip link set sixbone up

ip addr add 3ffe:406:5:1:5:a:2:1/96 dev sixbone

ip route add 3ffe::/15 dev sixbone

Chapter 5. GRE and other tunnels 16

Linux Advanced Routing & Traffic Control HOWTO

Let's discuss this. In the first line, we created a tunnel device called sixbone. We gave it mode sit (which is
IPv6 in IPv4 tunneling) and told it where to go to (remote) and where to come from (local). TTL is set to
maximum, 255. Next, we made the device active (up). After that, we added our own network address, and s
a route for 3ffe::/15 (which is currently all of 6bone) through the tunnel.

GRE tunnels are currently the preferred type of tunneling. It's a standard that is also widely adopted outside
the Linux community and therefore a Good Thing.

5.4. Userland tunnels

There are literally dozens of implementations of tunneling outside the kernel. Best known are of course PPF
and PPTP, but there are lots more (some proprietary, some secure, some that don't even use IP) and that is
really beyond the scope of this HOWTO.

Chapter 5. GRE and other tunnels 17

Chapter 6. IPv6 tunneling with Cisco and/or 6bone

By Marco Davids <marco@sara.nl>
NOTE to maintainer:
As far as | am concerned, this IPv6—IPv4 tunneling is not per definition GRE tunneling. You could tunnel

IPv6 over IPv4 by means of GRE tunnel devices (GRE tunnels ANY to IPv4), but the device used here ("sit"
only tunnels IPv6 over IPv4 and is therefore something different.

6.1. IPv6 Tunneling

This is another application of the tunneling capabilities of Linux. It is popular among the IPv6 early adopters,
or pioneers if you like. The 'hands—on' example described below is certainly not the only way to do IPv6
tunneling. However, it is the method that is often used to tunnel between Linux and a Cisco IPv6 capable
router and experience tells us that this is just the thing many people are after. Ten to one this applies to you
too ;-)

A short bit about IPv6 addresses:

IPv6 addresses are, compared to IPv4 addresses, really big: 128 bits against 32 bits. And this provides us jt
with the thing we need: many, many IP—addresses: 340,282,266,920,938,463,463,374,607,431,768,211,46!
be precise. Apart from this, IPv6 (or IPng, for IP Next Generation) is supposed to provide for smaller routing
tables on the Internet's backbone routers, simpler configuration of equipment, better security at the IP level
and better support for QoS.

An example: 2002:836b:9820:0000:0000:0000:836b:9886
Writing down IPv6 addresses can be quite a burden. Therefore, to make life easier there are some rules:
« Don't use leading zeroes. Same as in IPv4.
« Use colons to separate every 16 bits or two bytes.
* When you have lots of consecutive zeroes, you can write this down as :.. You can only do this once |

an address and only for quantities of 16 bits, though.

The address 2002:836b:9820:0000:0000:0000:836b:9886 can be written down as
2002:836h:9820::836b:9886, which is somewhat friendlier.

Another example, the address 3ffe:0000:0000:0000:0000:0020:34A1:F32C can be written down as
3ffe::20:34A1:F32C, which is a lot shorter.

IPv6 is intended to be the successor of the current IPv4. Because it is relatively new technology, there is no
worldwide native IPv6 network yet. To be able to move forward swiftly, the 6bone was introduced.

Native IPv6 networks are connected to each other by encapsulating the IPv6 protocol in IPv4 packets and
sending them over the existing IPv4 infrastructure from one IPv6 site to another.

That is precisely where the tunnel steps in.

Chapter 6. IPv6 tunneling with Cisco and/or 6bone 18

Linux Advanced Routing & Traffic Control HOWTO

To be able to use IPv6, we should have a kernel that supports it. There are many good documents on how t
achieve this. But it all comes down to a few steps:

» Get yourself a recent Linux distribution, with suitable glibc.
» Then get yourself an up—to—date kernel source.

If you are all set, then you can go ahead and compile an IPv6 capable kernel:

» Go to /ustr/src/linux and type:

» make menuconfig

» Choose "Networking Options"

 Select "The IPv6 protocol”, "IPv6: enable EUI-64 token format", "IPv6: disable provider based
addresses"

HINT: Don't go for the 'module' option. Often this won't work well.

In other words, compile IPv6 as 'built=in" in your kernel. You can then save your config like usual and go
ahead with compiling the kernel.

HINT: Before doing so, consider editing the Makefile: EXTRAVERSION = —x ; ——>; EXTRAVERSION =
—x—IPv6

There is a lot of good documentation about compiling and installing a kernel, however this document is abot
something else. If you run into problems at this stage, go and look for documentation about compiling a Lint
kernel according to your own specifications.

The file /usr/src/linux/README might be a good start. After you accomplished all this, and rebooted with
your brand new kernel, you might want to issue an '/sbin/ifconfig —a' and notice the brand new 'sitO—device'.
SIT stands for Simple Internet Transition. You may give yourself a compliment; you are now one major step
closer to IP, the Next Generation ;=)

Now on to the next step. You want to connect your host, or maybe even your entire LAN to another IPv6
capable network. This might be the "6bone" that is setup especially for this particular purpose.

Let's assume that you have the following IPv6 network: 3ffe:604:6:8::/64 and you want to connect it to 6bon
or a friend. Please note that the /64 subnet notation works just like with regular IP addresses.

Your IPv4 address is 145.100.24.181 and the 6bone router has IPv4 address 145.100.1.5

ip tunnel add sixbone mode sit remote 145.100.1.5 [local 145.100.24.181 ttl 255]
ip link set sixbone up

ip addr add 3FFE:604:6:7::2/126 dev sixbone

ip route add 3ffe::0/16 dev sixbone

Let's discuss this. In the first line, we created a tunnel device called sixbone. We gave it mode sit (which is
IPVv6 in IPv4 tunneling) and told it where to go to (remote) and where to come from (local). TTL is set to
maximum, 255.

Next, we made the device active (up). After that, we added our own network address, and set a route for

3ffe::/15 (which is currently all of 6bone) through the tunnel. If the particular machine you run this on is your
IPv6 gateway, then consider adding the following lines:

Chapter 6. IPv6 tunneling with Cisco and/or 6bone 19

Linux Advanced Routing & Traffic Control HOWTO

echo 1 >/proc/sys/net/ipvé/conf/all/forwarding
/usr/local/sbin/radvd

The latter, radvd is —like zebra— a router advertisement daemon, to support IPv6's autoconfiguration feature
Search for it with your favourite search—engine if you like. You can check things like this:

l# Isbin/ip f inet6 addr |

If you happen to have radvd running on your IPv6 gateway and boot your IPv6 capable Linux on a machine
on your local LAN, you would be able to enjoy the benefits of IPv6 autoconfiguration:

/sbin/ip —f inet6 addr
1: lo: <LOOPBACK,UP> mtu 3924 gdisc noqueue inet6 ::1/128 scope host

3: eth0: <BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast glen 100
inet6 3ffe:604:6:8:5054:4cff:fe01:e3d6/64 scope global dynamic

valid_Ift forever preferred_|Ift 604646sec inet6 fe80::5054:4cff:fe01:e3d6/10
scope link

You could go ahead and configure your bind for IPv6 addresses. The A type has an equivalent for IPv6:
AAAA. The in—addr.arpa’s equivalent is: ip6.int. There's a lot of information available on this topic.

There is an increasing number of IPv6—aware applications available, including secure shell, telnet, inetd,
Mozilla the browser, Apache the webserver and a lot of others. But this is all outside the scope of this Routir
document ;-)

On the Cisco side the configuration would be something like this:

1
interface Tunnell

description IPv6 tunnel

no ip address

no ip directed—broadcast

ipv6 enable

ipv6 address 3FFE:604:6:7::1/126
tunnel source Serial0

tunnel destination 145.100.24.181
tunnel mode ipv6ip

1

ipv6 route 3FFE:604:6:8::/64 Tunnell

But if you don't have a Cisco at your disposal, try one of the many IPv6 tunnel brokers available on the
Internet. They are willing to configure their Cisco with an extra tunnel for you. Mostly by means of a friendly
web interface. Search for "ipv6 tunnel broker" on your favourite search engine.

Chapter 6. IPv6 tunneling with Cisco and/or 6bone 20

Chapter 7. IPsec: secure IP over the Internet

FIXME: editor vacancy. In the meantime, see: The FreeS/WAN project. Another IPSec implementation for
Linux is Cerberus, by NIST. However, their web pages have not been updated in over a year, and their vers
tended to trail well behind the current Linux kernel. USAGI, an alternative IPv6 implementation for Linux,
also includes an IPSec implementation, but that might only be for IPv6.

Chapter 7. IPsec: secure IP over the Internet 21

http://www.freeswan.org/

Chapter 8. Multicast routing

FIXME: Editor Vacancy!

The Multicast-HOWTO is ancient (relatively—speaking) and may be inaccurate or misleading in places, for
that reason.

Before you can do any multicast routing, you need to configure the Linux kernel to support the type of
multicast routing you want to do. This, in turn, requires you to decide what type of multicast routing you
expect to be using. There are essentially four "common" types — DVMRP (the Multicast version of the RIP
unicast protocol), MOSPF (the same, but for OSPF), PIM-SM ("Protocol Independent Multicasting — Sparse
Mode", which assumes that users of any multicast group are spread out, rather than clumped) and PIM-DM
(the same, but "Dense Mode", which assumes that there will be significant clumps of users of the same
multicast group).

In the Linux kernel, you will notice that these options don't appear. This is because the protocol itself is
handled by a routing application, such as Zebra, mrouted, or pimd. However, you still have to have a good
idea of which you're going to use, to select the right options in the kernel.

For all multicast routing, you will definitely need to enable "multicasting” and "multicast routing". For
DVMRP and MOSPF, this is sufficient. If you are going to use PIM, you must also enable PIMv1 or PIMv2,
depending on whether the network you are connecting to uses version 1 or 2 of the PIM protocol.

Once you have all that sorted out, and your new Linux kernel compiled, you will see that the IP protocols
listed, at boot time, now include IGMP. This is a protocol for managing multicast groups. At the time of
writing, Linux supports IGMP versions 1 and 2 only, although version 3 does exist and has been documente
This doesn't really affect us that much, as IGMPv3 is still new enough that the extra capabilities of IGMPv3
aren't going to be that much use. Because IGMP deals with groups, only the features present in the simples
version of IGMP over the entire group are going to be used. For the most part, that will be IGMPv2, althoug!
IGMPv1 is sill going to be encountered.

So far, so good. We've enabled multicasting. Now, we have to tell the Linux kernel to actually do something
with it, so we can start routing. This means adding the Multicast virtual network to the router table:

ip route add 224.0.0.0/4 dev ethO

(Assuming, of course, that you're multicasting over ethQ! Substitute the device of your choice, for this.)

Now, tell Linux to forward packets...

echo 1 > /proc/sys/net/ipv4/ip_forward

At this point, you may be wondering if this is ever going to do anything. So, to test our connection, we ping
the default group, 224.0.0.1, to see if anyone is alive. All machines on your LAN with multicasting enabled
should respond, but nothing else. You'll notice that none of the machines that respond have an IP address c
224.0.0.1. What a surprise! :) This is a group address (a "broadcast" to subscribers), and all members of the

group will respond with their own address, not the group address.

ping —c 2 224.0.0.1

Chapter 8. Multicast routing 22

Linux Advanced Routing & Traffic Control HOWTO

At this point, you're ready to do actual multicast routing. Well, assuming that you have two networks to route
between.

(To Be Continued!)

Chapter 8. Multicast routing 23

Chapter 9. Queueing Disciplines for Bandwidth
Management

Now, when | discovered this, it really blew me away. Linux 2.2/2.4 comes with everything to manage
bandwidth in ways comparable to high—end dedicated bandwidth management systems.

Linux even goes far beyond what Frame and ATM provide.
Just to prevent confusion, tc uses the following rules for bandwith specification:

mbps = 1024 kbps = 1024 * 1024 bps => byte/s
mbit = 1024 kbit => kilo bit/s.

mb = 1024 kb = 1024 * 1024 b => byte

mbit = 1024 kbit => kilo bit.

Internally, the number is stored in bps and b.
But when tc prints the rate, it uses following :

1Mbit = 1024 Kbit = 1024 * 1024 bps => bit/s

9.1. Queues and Queueing Disciplines explained

With queueing we determine the way in which data is SENT. It is important to realise that we can only shape
data that we transmit.

With the way the Internet works, we have no direct control of what people send us. It's a bit like your
(physical!) mailbox at home. There is no way you can influence the world to modify the amount of mail they
send you, short of contacting everybody.

However, the Internet is mostly based on TCP/IP which has a few features that help us. TCP/IP has no way
knowing the capacity of the network between two hosts, so it just starts sending data faster and faster ('slow
start’) and when packets start getting lost, because there is no room to send them, it will slow down. In fact i
is a bit smarter than this, but more about that later.

This is the equivalent of not reading half of your mail, and hoping that people will stop sending it to you. Witt
the difference that it works for the Internet :-)

If you have a router and wish to prevent certain hosts within your network from downloading too fast, you
need to do your shaping on the *inner* interface of your router, the one that sends data to your own
computers.

You also have to be sure you are controlling the bottleneck of the link. If you have a 100Mbit NIC and you
have a router that has a 256kbit link, you have to make sure you are not sending more data than your route!
can handle. Otherwise, it will be the router who is controlling the link and shaping the available bandwith. W
need to 'own the queue' so to speak, and be the slowest link in the chain. Luckily this is easily possible.

Chapter 9. Queueing Disciplines for Bandwidth Management 24

Linux Advanced Routing & Traffic Control HOWTO
9.2. Simple, classless Queueing Disciplines

As said, with queueing disciplines, we change the way data is sent. Classless queueing disciplines are thos
that, by and large accept data and only reschedule, delay or drop it.

These can be used to shape traffic for an entire interface, without any subdivisions. It is vital that you
understand this part of queueing before we go on the the classful qdisc—containing—qdiscs!

By far the most widely used discipline is the pfifo_fast qdisc — this is the default. This also explains why thes
advanced features are so robust. They are nothing more than 'just another queue'.

Each of these queues has specific strengths and weaknesses. Not all of them may be as well tested.

9.2.1. pfifo_fast

This queue is, as the name says, First In, First Out, which means that no packet receives special treatment.
least, not quite. This queue has 3 so called 'bands'. Within each band, FIFO rules apply. However, as long &
there are packets waiting in band 0, band 1 won't be processed. Same goes for band 1 and band 2.

The kernel honors the so called Type of Service flag of packets, and takes care to insert ‘minimum delay'
packets in band 0.

Do not confuse this classless simple qdisc with the classful PRIO one! Although they behave similarly,
pfifo_fast is classless and you cannot add other gdiscs to it with the tc command.

9.2.1.1. Parameters & usage
You can't configure the pfifo_fast qdisc as it is the hardwired default. This is how it is configured by default:
priomap

Determines how packet priorities, as assigned by the kernel, map to bands. Mapping occurs based c
the TOS octet of the packet, which looks like this:

| PRECEDENCE | TOS | MBZ |
I I [1

The four TOS bits (the 'TOS field') are defined as:

Binary Decimcal Meaning

1000 8 Minimize delay (md)

0100 4 Maximize throughput (mt)
0010 2 Maximize reliability (mr)

0001 1 Minimize monetary cost (mmc)
0000 O Normal Service

As there is 1 bit to the right of these four bits, the actual value of the TOS field is double the value of
the TOS bits. Tcpdump —v —v shows you the value of the entire TOS field, not just the four bits. It is

Chapter 9. Queueing Disciplines for Bandwidth Management 25

Linux Advanced Routing & Traffic Control HOWTO

the value you see in the first column of this table:

TOS Bits Means Linux Priority Band
0x0 O Normal Service 0 Best Effort 1
0x2 1 Minimize Monetary Cost 1 Filler 2
0x4 2 Maximize Reliability 0 Best Effort 1
Ox6 3 mmc+mr 0 Best Effort 1
0x8 4 Maximize Throughput 2 Bulk 2
Oxa 5 mmc+mt 2 Bulk 2

Oxc 6 mr+mt 2 Bulk 2

Oxe 7 mmc+mr+mt 2 Bulk 2
0x10 8 Minimize Delay 6 Interactive 0
0x12 9 mmc+md 6 Interactive O
0x14 10 mr+md 6 Interactive O
0x16 11 mmc+mr+md 6 Interactive O
0x18 12 mt+md 4 Int. Bulk 1
Oxla 13 mmc+mt+md 4 Int. Bulk 1
Oxlc 14 mr+mt+md 4 Int. Bulk 1
Oxle 15 mmc+mr+mt+md 4 Int. Bulk 1

Lots of numbers. The second column contains the value of the relevant four TOS bits, followed by
their translated meaning. For example, 15 stands for a packet wanting Minimal Monetary Cost,
Maximum Reliability, Maximum Throughput AND Minimum Delay. | would call this a '‘Dutch
Packet'.

The fourth column lists the way the Linux kernel interprets the TOS bits, by showing to which
Priority they are mapped.

The last column shows the result of the default priomap. On the command line, the default priomap
looks like this:

[1,2,2,2,1,2,0,0,1,1,1,1,1,1,1, 1 |

This means that priority 4, for example, gets mapped to band number 1. The priomap also allows yol
to list higher priorities (> 7) which do not correspond to TOS mappings, but which are set by other
means.

This table from RFC 1349 (read it for more details) tells you how applications might very well set
their TOS bits:

TELNET 1000 (minimize delay)
FTP
Control 1000 (minimize delay)
Data 0100 (maximize throughput)
TFTP 1000 (minimize delay)
SMTP
Command phase 1000 (minimize delay)
DATA phase 0100 (maximize throughput)
Domain Name Service
UDP Query 1000 (minimize delay)
TCP Query 0000
Zone Transfer 0100 (maximize throughput)

Chapter 9. Queueing Disciplines for Bandwidth Management 26

Linux Advanced Routing & Traffic Control HOWTO

NNTP 0001 (minimize monetary cost)
ICMP
Errors 0000

Requests 0000 (mostly)
Responses <same as request> (mostly)

txqueuelen
The length of this queue is gleaned from the interface configuration, which you can see and set with
ifconfig and ip. To set the queue length to 10, execute: ifconfig ethO txqueuelen 10

You can't set this parameter with tc!

9.2.2. Token Bucket Filter

The Token Bucket Filter (TBF) is a simple gdisc that only passes packets arriving at a rate which is not
exceeding some administratively set rate, but with the possibility to allow short bursts in excess of this rate.

TBF is very precise, network— and processor friendly. It should be your first choice if you simply want to
slow an interface down!

The TBF implementation consists of a buffer (bucket), constantly filled by some virtual pieces of information
called tokens, at a specific rate (token rate). The most important parameter of the bucket is its size, that is tt
number of tokens it can store.

Each arriving token collects one incoming data packet from the data queue and is then deleted from the
bucket. Associating this algorithm with the two flows —— token and data, gives us three possible scenarios:

» The data arrives in TBF at a rate that's equal to the rate of incoming tokens. In this case each
incoming packet has its matching token and passes the queue without delay.

» The data arrives in TBF at a rate that's smaller than the token rate. Only a part of the tokens are
deleted at output of each data packet that's sent out the queue, so the tokens accumulate, up to the
bucket size. The unused tokens can then be used to send data a a speed that's exceeding the stand
token rate, in case short data bursts occur.

» The data arrives in TBF at a rate bigger than the token rate. This means that the bucket will soon be
devoid of tokens, which causes the TBF to throttle itself for a while. This is called an ‘overlimit
situation'. If packets keep coming in, packets will start to get dropped.

The last scenario is very important, because it allows to administratively shape the bandwidth available to d
that's passing the filter.

The accumulation of tokens allows a short burst of overlimit data to be still passed without loss, but any
lasting overload will cause packets to be constantly delayed, and then dropped.

Please note that in the actual implementation, tokens correspond to bytes, not packets.

9.2.2.1. Parameters & usage

Even though you will probably not need to change them, tbf has some knobs available. First the parameters
that are always available:

limit or latency

Chapter 9. Queueing Disciplines for Bandwidth Management 27

Linux Advanced Routing & Traffic Control HOWTO

Limit is the number of bytes that can be queued waiting for tokens to become available. You can als
specify this the other way around by setting the latency parameter, which specifies the maximum
amount of time a packet can sit in the TBF. The latter calculation takes into account the size of the
bucket, the rate and possibly the peakrate (if set).

burst/buffer/maxburst
Size of the bucket, in bytes. This is the maximum amount of bytes that tokens can be available for
instantaneously. In general, larger shaping rates require a larger buffer. For 10mbit/s on Intel, you
need at least 10kbyte buffer if you want to reach your configured rate!

If your buffer is too small, packets may be dropped because more tokens arrive per timer tick than fit
in your bucket.

mpu
A zero-sized packet does not use zero bandwidth. For ethernet, no packet uses less than 64 bytes.
Minimum Packet Unit determines the minimal token usage for a packet.

rate
The speedknob. See remarks above about limits!

If the bucket contains tokens and is allowed to empty, by default it does so at infinite speed. If this is
unacceptable, use the following parameters:

peakrate
If tokens are available, and packets arrive, they are sent out immediately by default, at 'lightspeed’ s
to speak. That may not be what you want, especially if you have a large bucket.

The peakrate can be used to specify how quickly the bucket is allowed to be depleted. If doing
everything by the book, this is achieved by releasing a packet, and then wait just long enough, and
release the next. We calculated our waits so we send just at peakrate.

However, due to de default 10ms timer resolution of Unix, with 10.000 bits average packets, we are
limited to 1mbit/s of peakrate!

mtu/minburst
The 1mbit/s peakrate is not very useful if your regular rate is more than that. A higher peakrate is
possible by sending out more packets per timertick, which effectively means that we create a seconc
bucket!

This second bucket defaults to a single packet, which is not a bucket at all.

To calculate the maximum possible peakrate, multiply the configured mtu by 100 (or more correctly,
HZ, which is 100 on Intel, 1024 on Alpha).

9.2.2.2. Sample configuration

A simple but *very* useful configuration is this:

|# tc qdisc add dev ppp0 root thf rate 220kbit latency 50ms burst 1540 |

Ok, why is this useful? If you have a networking device with a large queue, like a DSL modem or a cable
modem, and you talk to it over a fast device, like over an ethernet interface, you will find that uploading
absolutely destroys interactivity.

Chapter 9. Queueing Disciplines for Bandwidth Management 28

Linux Advanced Routing & Traffic Control HOWTO

This is because uploading will fill the queue in the modem, which is probably *huge* because this helps
actually achieving good data throughput uploading. But this is not what you want, you want to have the quel
not too big so interactivity remains and you can still do other stuff while sending data.

The line above slows down sending to a rate that does not lead to a queue in the modem - the queue will b
Linux, where we can control it to a limited size.

Change 220kbit to your uplink's *actual* speed, minus a few percent. If you have a really fast modem, raise
‘burst’ a bit.

9.2.3. Stochastic Fairness Queueing

Stochastic Fairness Queueing (SFQ) is a simple implementation of the fair queueing algorithms family. It's
less accurate than others, but it also requires less calculations while being almost perfectly fair.

The key word in SFQ is conversation (or flow), which mostly corresponds to a TCP session or a UDP strean
Traffic is divided into a pretty large number of FIFO queues, one for each conversation. Traffic is then sent i
a round robin fashion, giving each session the chance to send data in turn.

This leads to very fair behaviour and disallows any single conversation from drowning out the rest. SFQ is
called 'Stochastic' because it doesn't really allocate a queue for each session, it has an algorithm which divi
traffic over a limited number of queues using a hashing algorithm.

Because of the hash, multiple sessions might end up in the same bucket, which would halve each session's
chance of sending a packet, thus halving the effective speed available. To prevent this situation from
becoming noticeable, SFQ changes its hashing algorithm quite often so that any two colliding sessions will
only do so for a small number of seconds.

It is important to note that SFQ is only useful in case your actual outgoing interface is really full! If it isn't
then there will be no queue on your linux machine and hence no effect. Later on we will describe how to
combine SFQ with other gdiscs to get a best—of-both worlds situation.

Specifically, setting SFQ on the ethernet interface heading to your cable modem or DSL router is pointless
without further shaping!

9.2.3.1. Parameters & usage
The SFQ is pretty much self tuning:

perturb
Reconfigure hashing once this many seconds. If unset, hash will never be reconfigured. Not
recommended. 10 seconds is probably a good value.

quantum
Amount of bytes a stream is allowed to dequeue before the next queue gets a turn. Defaults to 1
maximum sized packet (MTU-sized). Do not set below the MTU!

Chapter 9. Queueing Disciplines for Bandwidth Management 29

Linux Advanced Routing & Traffic Control HOWTO

9.2.3.2. Sample configuration

If you have a device which has identical link speed and actual available rate, like a phone modem, this
configuration will help promote fairness:

tc qdisc add dev pppO root sfq perturb 10

tc —s —d qdisc Is

gdisc sfq 800c: dev ppp0 quantum 1514b limit 128p flows 128/1024 perturb 10sec
Sent 4812 bytes 62 pkts (dropped 0, overlimits 0)

The number 800c: is the automatically assigned handle number, limit means that 128 packets can wait in th
gueue. There are 1024 hashbuckets available for accounting, of which 128 can be active at a time (no more
packets fit in the queue!) Once every 10 seconds, the hashes are reconfigured.

9.3. Advice for when to use which queue

Summarizing, these are the simple queues that actually manage traffic by reordering, slowing or dropping
packets.

The following tips may help in choosing which queue to use. It mentions some gdiscs described in the
Chapter 14 chapter.

» To purely slow down outgoing traffic, use the Token Bucket Filter. Works up to huge bandwidths, if
you scale the bucket.

« If your link is truly full and you want to make sure that no single session can dominate your outgoing
bandwidth, use Stochastical Fairness Queueing.

« If you have a big backbone and know what you are doing, consider Random Early Drop (see
Advanced chapter).

» To 'shape’ incoming traffic which you are not forwarding, use the Ingress Policer. Incoming shaping i
called 'policing', by the way, not 'shaping'.

« If you *are* forwarding it, use a TBF on the interface you are forwarding the data to. Unless you wan
to shape traffic that may go out over several interfaces, in which case the only common factor is the
incoming interface. In that case use the Ingress Policer.

« If you don't want to shape, but only want to see if your interface is so loaded that it has to queue, use
the pfifo queue (not pfifo_fast). It lacks internal bands but does account the size of its backlog.

« Finally — you can also do "social shaping"”. You may not always be able to use technology to achieve
what you want. Users experience technical constraints as hostile. A kind word may also help with
getting your bandwidth to be divided right!

9.4. Terminology

To properly understand more complicated configurations it is necessary to explain a few concepts first.
Because of the complexity and he relative youth of the subject, a lot of different words are used when peopls
in fact mean the same thing.

The following is loosely based on draft-ietf-diffserv—model-06.txt, An Informal Management
Model for Diffserv Routers. It can currently be found at

http://www.ietf.org/internet—drafts/draft—ietf—diffserv—model-06.txt.

Read it for the strict definitions of the terms used.

Chapter 9. Queueing Disciplines for Bandwidth Management 30

http://www.ietf.org/internet-drafts/draft-ietf-diffserv-model-06.txt

Linux Advanced Routing & Traffic Control HOWTO

Queueing Discipline
An algorithm that manages the queue of a device, either incoming (ingress) or outgoing (egress).

Classless qdisc
A qdisc with no configurable internal subdivisions.

Classful qdisc
A classful gdisc contains multiple classes. Each of these classes contains a further gdisc, which may
again be classful, but need not be. According to the strict definition, pfifo_fast *is* classful, because i
contains three bands which are, in fact, classes. However, from the user's configuration perspective,
is classless as the classes can't be touched with the tc tool.

Classes
A classful gdisc may have many classes, which each are internal to the qdisc. Each of these classes
may contain a real gdisc.

Classifier
Each classful gdisc needs to determine to which class it needs to send a packet. This is done using
classifier.

Filter
Classification can be performed using filters. A filter contains a number of conditions which if
matched, make the filter match.

Scheduling
A qdisc may, with the help of a classifier, decide that some packets need to go out earlier than other:
This process is called Scheduling, and is performed for example by the pfifo_fast gdisc mentioned
earlier. Scheduling is also called 'reordering’, but this is confusing.

Shaping
The process of delaying packets before they go out to make traffic confirm to a configured maximum
rate. Shaping is performed on egress. Colloquially, dropping packets to slow traffic down is also ofte
called Shaping.

Policing
Delaying or dropping packets in order to make traffic stay below a configured bandwidth. In Linux,
policing can only drop a packet and not delay it — there is no 'ingress queue'.

Work-Conserving
A work—conserving qdisc always delivers a packet if one is available. In other words, it never delays
a packet if the network adaptor is ready to send one (in the case of an egress qdisc).

non-Work—-Conserving
Some queues, like for example the Token Bucket Filter, may need to hold on to a packet for a certail
time in order to limit the bandwidth. This means that they sometimes refuse to give up a packet, evel
though they have one available.

Now that we have our terminology straight, let's see where all these things are.

Userspace programs
N

[Y I
| =————— > |P Stack

[| I I
[| Y I
[Y I
[7~ I [
| || === > Forwarding —>

[~/ I [
I 4 Y I

Chapter 9. Queueing Disciplines for Bandwidth Management 31

Linux Advanced Routing & Traffic Control HOWTO

| ~ Y /—qdisc1-\ |

| | Egress /-—qdisc2—-\ |
———>->|ngress Classifier ———qdisc3———— | —>

| Qdisc __qdisc4__/ |

| \—qdiscN_/ |

I I

Thanks to Jamal Hadi Salim for this ASCII representation.

The big block represents the kernel. The leftmost arrow represents traffic entering your machine from the
network. It is then fed to the Ingress Qdisc which may apply Filters to a packet, and decide to drop it. This is
called 'Policing'.

This happens at a very early stage, before it has seen a lot of the kernel. It is therefore a very good place to
drop traffic very early, without consuming a lot of CPU power.

If the packet is allowed to continue, it may be destined for a local application, in which case it enters the IP
stack in order to be processed, and handed over to a userspace program. The packet may also be forwarde
without entering an application, in which case it is destined for egress. Userspace programs may also delive
data, which is then examined and forwarded to the Egress Classifier.

There it is investigated and enqueued to any of a number of gdiscs. In the unconfigured default case, there |
only one egress qdisc installed, the pfifo_fast, which always receives the packet. This is called 'enqueueing'

The packet now sits in the gdisc, waiting for the kernel to ask for it for transmission over the network
interface. This is called 'dequeueing'.

This picture also holds in case there is only one network adaptor — the arrows entering and leaving the kern
should not be taken too literally. Each network adaptor has both ingress and egress hooks.

9.5. Classful Queueing Disciplines

Classful qdiscs are very useful if you have different kinds of traffic which should have differing treatment.
One of the classful qdiscs is called 'CBQ', 'Class Based Queueing' and it is so widely mentioned that people
identify queueing with classes solely with CBQ, but this is not the case.

CBQ is merely the oldest kid on the block — and also the most complex one. It may not always do what you
want. This may come as something of a shock to many who fell for the 'sendmail effect’, which teaches us tt
any complex technology which doesn't come with documentation must be the best available.

More about CBQ and its alternatives shortly.

9.5.1. Flow within classful qdiscs & classes

When traffic enters a classful gdisc, it needs to be sent to any of the classes within — it needs to be 'classifie
To determine what to do with a packet, the so called 'filters' are consulted. It is important to know that the
filters are called from within a gdisc, and not the other way around!

The filters attached to that qdisc then return with a decision, and the qdisc uses this to enqueue the packet i
one of the classes. Each subclass may try other filters to see if further instructions apply. If not, the class

Chapter 9. Queueing Disciplines for Bandwidth Management 32

Linux Advanced Routing & Traffic Control HOWTO

engueues the packet to the gdisc it contains.

Besides containing other qdiscs, most classful qdiscs also perform shaping. This is useful to perform both
packet scheduling (with SFQ, for example) and rate control. You need this in cases where you have a high
speed interface (for example, ethernet) to a slower device (a cable modem).

If you were only to run SFQ, nothing would happen, as packets enter & leave your router without delay: the
output interface is far faster than your actual link speed. There is no queue to schedule then.

9.5.2. The qgdisc family: roots, handles, siblings and parents

Each interface has one egress 'root qdisc', by default the earlier mentioned classless pfifo_fast queueing
discipline. Each gdisc can be assigned a handle, which can be used by later configuration statements to refi
to that gdisc. Besides an egress qdisc, an interface may also have an ingress, which polices traffic coming i

The handles of these gdiscs consist of two parts, a major number and a minor number. It is habitual to name
the root gdisc '1:', which is equal to '1:0'. The minor number of a gdisc is always 0.

Classes need to have the same major number as their parent.

9.5.2.1. How filters are used to classify traffic

Recapping, a typical hierarchy might look like this:

10: 11: 12:
[\ [\
10:1 10:2 12:1 12:2

But don't let this tree fool you! You should *not* imagine the kernel to be at the apex of the tree and the
network below, that is just not the case. Packets get enqueued and dequeued at the root qdisc, which is the
only thing the kernel talks to.

A packet might get classified in a chain like this:

1.>1.1->12: —>12:2

The packet now resides in a queue in a qdisc attached to class 12:2. In this example, a filter was attached t
each 'node' in the tree, each choosing a branch to take next. This can make sense. However, this is also
possible:

1. —>12:2

In this case, a filter attached to the root decided to send the packet directly to 12:2.

Chapter 9. Queueing Disciplines for Bandwidth Management 33

Linux Advanced Routing & Traffic Control HOWTO

9.5.2.2. How packets are dequeued to the hardware

When the kernel decides that it needs to extract packets to send to the interface, the root qdisc 1: gets a
dequeue request, which is passed to 1:1, which is in turn passed to 10:, 11: and 12:, which each query their
siblings, and try to dequeue() from them. In this case, the kernel needs to walk the entire tree, because only
12:2 contains a packet.

In short, nested classes ONLY talk to their parent qdiscs, never to an interface. Only the root gdisc gets
dequeued by the kernel!

The upshot of this is that classes never get dequeued faster than their parents allow. And this is exactly whe
we want: this way we can have SFQ in an inner class, which doesn't do any shaping, only scheduling, and
have a shaping outer qdisc, which does the shaping.

9.5.3. The PRIO qdisc

The PRIO qdisc doesn't actually shape, it only subdivides traffic based on how you configured your filters.
You can consider the PRIO gdisc a kind of pfifo_fast on steroids, whereby each band is a separate class
instead of a simple FIFO.

When a packet is enqueued to the PRIO gdisc, a class is chosen based on the filter commands you gave. B
default, three classes are created. These classes by default contain pure FIFO gdiscs with no internal struct
but you can replace these by any qdisc you have available.

Whenever a packet needs to be dequeued, class :1 is tried first. Higher classes are only used if lower bands
did not give up a packet.

This qgdisc is very useful in case you want to prioritize certain kinds of traffic without using only TOS-flags
but using all the power of the tc filters. It can also contain more all qdiscs, whereas pfifo_fast is limited to
simple fifo gdiscs.

Because it doesn't actually shape, the same warning as for SFQ holds: either use it only if your physical link
really full or wrap it inside a classful qdisc that does shape. The last holds for almost all cable modems and
DSL devices.

In formal words, the PRIO qdisc is a Work—Conserving scheduler.

9.5.3.1. PRIO parameters & usage
The following parameters are recognized by tc:

bands
Number of bands to create. Each band is in fact a class. If you change this number, you must also
change:

priomap
If you do not provide tc filters to classify traffic, the PRIO qdisc looks at the TC_PRIO priority to
decide how to enqueue traffic.

This works just like with the pfifo_fast qdisc mentioned earlier, see there for lots of detail.

Chapter 9. Queueing Disciplines for Bandwidth Management 34

Linux Advanced Routing & Traffic Control HOWTO

The bands are classes, and are called major:1 to major:3 by default, so if your PRIO qgdisc is called 12:, tc
filter traffic to 12:1 to grant it more priority.

Reiterating, band 0 goes to minor number 1! Band 1 to minor number 2, etc.

9.5.3.2. Sample configuration

We will create this tree:

root 1: prio

/] \

1:1 1:2 1:3

[11

10: 20: 30:

sfq tbf sfq
band 0 1 2

Bulk traffic will go to 30:, interactive traffic to 20: or 10:.

Command lines:

tc qdisc add dev ethO root handle 1: prio
This *instantly* creates classes 1:1, 1:2, 1:3

tc qdisc add dev ethO parent 1:1 handle 10: sfq
tc qdisc add dev eth0 parent 1:2 handle 20: tbf rate 20kbit buffer 1600 limit 3000
tc qdisc add dev ethO parent 1:3 handle 30: sfq

Now let's see what we created:

tc —s qdisc Is dev ethO
qdisc sfq 30: quantum 1514b
Sent 0 bytes 0 pkts (dropped 0, overlimits 0)

gdisc tbf 20: rate 20Kbit burst 1599b lat 667.6ms
Sent 0 bytes 0 pkts (dropped 0, overlimits 0)

gdisc sfq 10: quantum 1514b
Sent 132 bytes 2 pkts (dropped 0, overlimits 0)

gdisc prio 1: bands 3 priomap 1222120011111111
Sent 174 bytes 3 pkts (dropped 0, overlimits 0)

As you can see, band 0 has already had some traffic, and one packet was sent while running this command

We now do some bulk data transfer with a tool that properly sets TOS flags, and take another look:

scp tc ahu@10.0.0.11:./

ahu@10.0.0.11's password:

tc 100% [rrxskkkiriiikikixxiiikiiis| 353 KB 00:00
tc —s qdisc Is dev ethO

qdisc sfq 30: quantum 1514b

Sent 384228 bytes 274 pkts (dropped 0, overlimits 0)

qgdisc tbf 20: rate 20Kbit burst 1599b lat 667.6ms
Sent 2640 bytes 20 pkts (dropped 0, overlimits 0)

Chapter 9. Queueing Disciplines for Bandwidth Management 35

Linux Advanced Routing & Traffic Control HOWTO
gdisc sfq 10: quantum 1514b
Sent 2230 bytes 31 pkts (dropped 0, overlimits 0)

gdisc prio 1: bands 3 priomap 1222120011111111
Sent 389140 bytes 326 pkts (dropped 0, overlimits 0)

As you can see, all traffic went to handle 30:, which is the lowest priority band, just as intended. Now to
verify that interactive traffic goes to higher bands, we create some interactive traffic:

tc —s qdisc Is dev ethO
qdisc sfq 30: quantum 1514b
Sent 384228 bytes 274 pkts (dropped 0, overlimits 0)

gdisc tbf 20: rate 20Kbit burst 1599b lat 667.6ms
Sent 2640 bytes 20 pkts (dropped 0, overlimits 0)

gdisc sfq 10: quantum 1514b
Sent 14926 bytes 193 pkts (dropped 0, overlimits 0)

gdisc prio 1: bands 3 priomap 1222120011111111
Sent 401836 bytes 488 pkts (dropped 0, overlimits 0)

It worked - all additional traffic has gone to 10:, which is our highest priority gdisc. No traffic was sent to the
lowest priority, which previously received our entire scp.

9.5.4. The famous CBQ qdisc

As said before, CBQ is the most complex gdisc available, the most hyped, the least understood, and probat
the trickiest one to get right. This is not because the authors are evil or incompetent, far from it, it's just that
the CBQ algorithm isn't all that precise and doesn't really match the way Linux works.

Besides being classful, CBQ is also a shaper and it is in that aspect that it really doesn't work very well. It
should work like this. If you try to shape a 10mbit/s connection to 1mbit/s, the link should be idle 90% of the
time. If it isn't, we need to throttle so that it IS idle 90% of the time.

This is pretty hard to measure, so CBQ instead derives the idle time from the number of microseconds that
elapse between requests from the hardware layer for more data. Combined, this can be used to approximat
how full or empty the link is.

This is rather circumspect and doesn't always arrive at proper results. For example, what if the actual link
speed of an interface that is not really able to transmit the full 2L00mbit/s of data, perhaps because of a badly
implemented driver? A PCMCIA network card will also never achieve 100mbit/s because of the way the bus
is designed — again, how do we calculate the idle time?

It gets even worse if we consider not—quite—real network devices like PPP over Ethernet or PPTP over
TCP/IP. The effective bandwidth in that case is probably determined by the efficiency of pipes to userspace
which is huge.

People who have done measurements discover that CBQ is not always very accurate and sometimes
completely misses the mark.

Chapter 9. Queueing Disciplines for Bandwidth Management 36

Linux Advanced Routing & Traffic Control HOWTO

In many circumstances however it works well. With the documentation provided here, you should be able to
configure it to work well in most cases.

9.5.4.1. CBQ shaping in detail

As said before, CBQ works by making sure that the link is idle just long enough to bring down the real
bandwidth to the configured rate. To do so, it calculates the time that should pass between average packets

During operations, the effective idletime is measured using an exponential weighted moving average
(EWMA), which considers recent packets to be exponentially more important than past ones. The UNIX
loadaverage is calculated in the same way.

The calculated idle time is subtracted from the EWMA measured one, the resulting number is called ‘avgidle
A perfectly loaded link has an avgidle of zero: packets arrive exactly once every calculated interval.

An overloaded link has a negative avgidle and if it gets too negative, CBQ shuts down for a while and is thel
‘overlimit'.

Conversely, an idle link might amass a huge avgidle, which would then allow infinite bandwidths after a few
hours of silence. To prevent this, avgidle is capped at maxidle.

If overlimit, in theory, the CBQ could throttle itself for exactly the amount of time that was calculated to pass
between packets, and then pass one packet, and throttle again. But see the 'minburst' parameter below.

These are parameters you can specify in order to configure shaping:

avpkt
Average size of a packet, measured in bytes. Needed for calculating maxidle, which is derived from
maxburst, which is specified in packets.

bandwidth
The physical bandwidth of your device, needed for idle time calculations.

cell
The time a packet takes to be transmitted over a device may grow in steps, based on the packet size
An 800 and an 806 size packet may take just as long to send, for example - this sets the granularity
Most often set to '8'. Must be an integral power of two.

maxburst
This number of packets is used to calculate maxidle so that when avgidle is at maxidle, this number
average packets can be burst before avgidle drops to 0. Set it higher to be more tolerant of bursts. Y
can't set maxidle directly, only via this parameter.

minburst
As mentioned before, CBQ needs to throttle in case of overlimit. The ideal solution is to do so for
exactly the calculated idle time, and pass 1 packet. However, Unix kernels generally have a hard tim
scheduling events shorter than 10ms, so it is better to throttle for a longer period, and then pass
minburst packets in one go, and then sleep minburst times longer.

The time to wait is called the offtime. Higher values of minburst lead to more accurate shaping in the
long term, but to bigger bursts at millisecond timescales.

minidle
If avgidle is below 0, we are overlimits and need to wait until avgidle will be big enough to send one
packet. To prevent a sudden burst from shutting down the link for a prolonged period of time, avgidle
is reset to minidle if it gets too low.

Chapter 9. Queueing Disciplines for Bandwidth Management 37

Linux Advanced Routing & Traffic Control HOWTO

Minidle is specified in negative microseconds, so 10 means that avgidle is capped at —10us.
mpu
Minimum packet size — needed because even a zero size packet is padded to 64 bytes on ethernet,
so takes a certain time to transmit. CBQ needs to know this to accurately calculate the idle time.
rate
Desired rate of traffic leaving this gdisc - this is the 'speed knob'!

Internally, CBQ has a lot of fine tuning. For example, classes which are known not to have data enqueued t
them aren't queried. Overlimit classes are penalized by lowering their effective priority. All very smart &
complicated.

9.5.4.2. CBQ classful behaviour

Besides shaping, using the aforementioned idletime approximations, CBQ also acts like the PRIO queue in’
sense that classes can have differing priorities and that lower priority numbers will be polled before the high
priority ones.

Each time a packet is requested by the hardware layer to be sent out to the network, a weighted round robir
process (‘WRR') starts, beginning with the lower priority classes.

These are then grouped and queried if they have data available. If so, it is returned. After a class has been
allowed to dequeue a number of bytes, the next class within that priority is tried.

The following parameters control the WRR process:

allot
When the outer CBQ is asked for a packet to send out on the interface, it will try all inner gdiscs (in
the classes) in turn, in order of the 'priority’ parameter. Each time a class gets its turn, it can only ser
out a limited amount of data. 'Allot’ is the base unit of this amount. See the 'weight' parameter for
more information.

prio

The CBQ can also act like the PRIO device. Inner classes with lower priority are tried first and as
long as they have traffic, other classes are not polled for traffic.

weight
Weight helps in the Weighted Round Robin process. Each class gets a chance to send in turn. If you
have classes with significantly more bandwidth than other classes, it makes sense to allow them to
send more data in one round than the others.

A CBQ adds up all weights under a class, and normalizes them, so you can use arbitrary numbers:
only the ratios are important. People have been using ‘rate/10' as a rule of thumb and it appears to
work well. The renormalized weight is multiplied by the ‘allot’ parameter to determine how much data
can be sent in one round.

Please note that all classes within an CBQ hierarchy need to share the same major number!

9.5.4.3. CBQ parameters that determine link sharing & borrowing

Besides purely limiting certain kinds of traffic, it is also possible to specify which classes can borrow capacit
from other classes or, conversely, lend out bandwidth.

Chapter 9. Queueing Disciplines for Bandwidth Management 38

Linux Advanced Routing & Traffic Control HOWTO

Isolated/sharing
A class that is configured with ‘isolated’ will not lend out bandwidth to sibling classes. Use this if you
have competing or mutually—unfriendly agencies on your link who do want to give each other
freebies.

The control program tc also knows about 'sharing’, which is the reverse of 'isolated'.
bounded/borrow

A class can also be 'bounded’, which means that it will not try to borrow bandwidth from sibling

classes. tc also knows about 'borrow’, which is the reverse of 'bounded'.

A typical situation might be where you have two agencies on your link which are both 'isolated' and 'bounde
which means that they are really limited to their assigned rate, and also won't allow each other to borrow.

Within such an agency class, there might be other classes which are allowed to swap bandwidth.

9.5.4.4. Sample configuration

This configuration limits webserver traffic to 5mbit and SMTP traffic to 3 mbit. Together, they may not get
more than 6mbit. We have a 100mbit NIC and the classes may borrow bandwidth from each other.

tc qdisc add dev ethO root handle 1:0 cbg bandwidth 100Mbit \
avpkt 1000 cell 8

tc class add dev ethO parent 1:0 classid 1:1 cbg bandwidth 100Mbit \
rate 6Mbit weight 0.6Mbit prio 8 allot 1514 cell 8 maxburst 20 \
avpkt 1000 bounded

This part installs the root and the customary 1:0 class. The 1:1 class is bounded, so the total bandwidth can
exceed 6mbit.

As said before, CBQ requires a *lot* of knobs. All parameters are explained above, however. The
corresponding HTB configuration is lots simpler.

tc class add dev ethO parent 1:1 classid 1:3 cbq bandwidth 100Mbit \
rate 5Mbit weight 0.5Mbit prio 5 allot 1514 cell 8 maxburst 20 \
avpkt 1000

tc class add dev ethO parent 1:1 classid 1:4 cbg bandwidth 100Mbit \
rate 3Mbit weight 0.3Mbit prio 5 allot 1514 cell 8 maxburst 20 \
avpkt 1000

These are our two classes. Note how we scale the weight with the configured rate. Both classes are not
bounded, but they are connected to class 1:1 which is bounded. So the sum of bandwith of the 2 classes wil
never be more than 6mbit. The classids need to be within the same major number as the parent CBQ, by th
way!

tc qdisc add dev ethO parent 1:3 handle 30: sfq
tc qdisc add dev ethO parent 1:4 handle 40: sfq

Both classes have a FIFO qdisc by default. But we replaced these with an SFQ queue so each flow of data
treated equally.

tc filter add dev ethO parent 1:0 protocol ip prio 1 u32 match ip \
sport 80 Oxffff flowid 1:3
tc filter add dev ethO parent 1:0 protocol ip prio 1 u32 match ip \

Chapter 9. Queueing Disciplines for Bandwidth Management 39

Linux Advanced Routing & Traffic Control HOWTO

| sport 25 Oxffff flowid 1:4

These commands, attached directly to the root, send traffic to the right gdiscs.

Note that we use 'tc class add' to CREATE classes within a qdisc, but that we use 'tc qdisc add' to actually ¢
gdiscs to these classes.

You may wonder what happens to traffic that is not classified by any of the two rules. It appears that in this
case, data will then be processed within 1:0, and be unlimited.

If SMTP+web together try to exceed the set limit of 6mbit/s, bandwidth will be divided according to the
weight parameter, giving 5/8 of traffic to the webserver and 3/8 to the mail server.

With this configuration you can also say that webserver traffic will always get at minimum 5/8 * 6 mbit =
3.75 mbit.

9.5.4.5. Other CBQ parameters: split & defmap
As said before, a classful qdisc needs to call filters to determine which class a packet will be enqueued to.

Besides calling the filter, CBQ offers other options, defmap & split. This is pretty complicated to understand,
and it is not vital. But as this is the only known place where defmap & split are properly explained, I'm doing
my best.

As you will often want to filter on the Type of Service field only, a special syntax is provided. Whenever the
CBQ needs to figure out where a packet needs to be enqueued, it checks if this node is a 'split node'. If so, «
of the sub—qdiscs has indicated that it wishes to receive all packets with a certain configured priority, as mig
be derived from the TOS field, or socket options set by applications.

The packets' priority bits are or—ed with the defmap field to see if a match exists. In other words, this is a
short—hand way of creating a very fast filter, which only matches certain priorities. A defmap of ff (hex) will
match everything, a map of 0 nothing. A sample configuration may help make things clearer:

tc qdisc add dev ethl root handle 1: cbg bandwidth 10Mbit allot 1514 \
cell 8 avpkt 1000 mpu 64

tc class add dev ethl parent 1:0 classid 1:1 cbg bandwidth 10Mbit \
rate 10Mbit allot 1514 cell 8 weight 1Mbit prio 8 maxburst 20 \
avpkt 1000

Standard CBQ preambile. | never get used to the sheer amount of numbers required!

Defmap refers to TC_PRIO bits, which are defined as follows:

TC_PRIO.. Num Corresponds to TOS
BESTEFFORT 0 Maximize Reliablity
FILLER 1 Minimize Cost

BULK 2 Maximize Throughput (0x8)

INTERACTIVE_BULK 4
INTERACTIVE 6 Minimize Delay (0x10)
CONTROL 7

Chapter 9. Queueing Disciplines for Bandwidth Management 40

Linux Advanced Routing & Traffic Control HOWTO

The TC_PRIO.. number corresponds to bits, counted from the right. See the pfifo_fast section for more deta
how TOS bits are converted to priorities.

Now the interactive and the bulk classes:

tc class add dev ethl parent 1:1 classid 1:2 cbg bandwidth 10Mbit \
rate 1Mbit allot 1514 cell 8 weight 100Kbit prio 3 maxburst 20 \
avpkt 1000 split 1:0 defmap cO

tc class add dev ethl parent 1:1 classid 1:3 cbqg bandwidth 10Mbit \
rate 8Mbit allot 1514 cell 8 weight 800Kbit prio 7 maxburst 20 \
avpkt 1000 split 1:0 defmap 3f

The 'split gdisc' is 1:0, which is where the choice will be made. CO is binary for 11000000, 3F for 00111111,
so these two together will match everything. The first class matches bits 7 & 6, and thus corresponds to
'interactive’ and 'control' traffic. The second class matches the rest.

Node 1:0 now has a table like this:

priority send to
1:3
1:3
1:3
1:3
1:3
1:3
1:2
1:2

~No o~ WNEO

For additional fun, you can also pass a 'change mask’, which indicates exactly which priorities you wish to
change. You only need to use this if you are running 'tc class change'. For example, to add best effort traffic
1:2, we could run this:

|# tc class change dev ethl classid 1:2 cbq defmap 01/01 |

The priority map over at 1:0 now looks like this:

priority send to
1:2
1:3
1:3
1:3
1:3
1:3
1:2
1:2

~No bk, WNEO

FIXME: did not test 'tc class change', only looked at the source.

9.5.5. Hierarchical Token Bucket

Martin Devera (<devik>) rightly realised that CBQ is complex and does not seem optimized for many typical
situations. His Hierarchical approach is well suited for setups where you have a fixed amount of bandwidth
which you want to divide for different purposes, giving each purpose a guaranteed bandwidth, with the

Chapter 9. Queueing Disciplines for Bandwidth Management 41

Linux Advanced Routing & Traffic Control HOWTO

possibility of specifying how much bandwidth can be borrowed.

HTB works just like CBQ but does not resort to idle time calculations to shape. Instead, it is a classful Toker
Bucket Filter — hence the name. It has only a few parameters, which are well documented on his site.

As your HTB configuration gets more complex, your configuration scales well. With CBQ it is already
complex even in simple cases! HTB is not yet a part of the standard kernel, but it should soon be!

If you are in a position to patch your kernel, by all means consider HTB.

9.5.5.1. Sample configuration

Functionally almost identical to the CBQ sample configuration above:

tc qdisc add dev eth0 root handle 1: htb default 30
tc class add dev ethO parent 1: classid 1:1 htb rate 6mbit burst 15k
tc class add dev ethO parent 1:1 classid 1:10 htb rate 5mbit burst 15k

tc class add dev ethO parent 1:1 classid 1:20 htb rate 3mbit ceil 6mbit burst 15k
tc class add dev ethO parent 1:1 classid 1:30 htb rate 1kbit ceil 6mbit burst 15k

The author then recommends SFQ for beneath these classes:

tc qdisc add dev eth0 parent 1:10 handle 10: sfq perturb 10
tc qdisc add dev eth0 parent 1:20 handle 20: sfq perturb 10
tc qdisc add dev eth0 parent 1:30 handle 30: sfq perturb 10

Add the filters which direct traffic to the right classes:

U32="tc filter add dev ethO protocol ip parent 1:0 prio 1 u32"
$U32 match ip dport 80 Oxffff flowid 1:10
$U32 match ip sport 25 Oxffff flowid 1:20

And that's it — no unsightly unexplained numbers, no undocumented parameters.

HTB certainly looks wonderful — if 10: and 20: both have their guaranteed bandwidth, and more is left to
divide, they borrow in a 5:3 ratio, just as you would expect.

Unclassified traffic gets routed to 30:, which has little bandwidth of its own but can borrow everything that is
left over. Because we chose SFQ internally, we get fairness thrown in for free!

9.6. Classifying packets with filters

To determine which class shall process a packet, the so—called 'classifier chain' is called each time a choice
needs to be made. This chain consists of all filters attached to the classful gdisc that needs to decide.

To reiterate the tree, which is not a tree:

root 1:

I
11

Chapter 9. Queueing Disciplines for Bandwidth Management 42

http://luxik.cdi.cz/~devik/qos/htb/

Linux Advanced Routing & Traffic Control HOWTO

10: 11: 12:
[\ [\
10:1 10:2 12:1 12:2

When enqueueing a packet, at each branch the filter chain is consulted for a relevant instruction. A typical
setup might be to have a filter in 1:1 that directs a packet to 12: and a filter on 12: that sends the packet to
12:2.

You might also attach this latter rule to 1:1, but you can make efficiency gains by having more specific tests
lower in the chain.

You can't filter a packet 'upwards', by the way. Also, with HTB, you should attach all filters to the root!

And again — packets are only enqueued downwards! When they are dequeued, they go up again, where the
interface lives. They do NOT fall off the end of the tree to the network adaptor!

9.6.1. Some simple filtering examples

As explained in the Classifier chapter, you can match on literally anything, using a very complicated syntax.
To start, we will show how to do the obvious things, which luckily are quite easy.

Let's say we have a PRIO qdisc called '10:' which contains three classes, and we want to assign all traffic fr
and to port 22 to the highest priority band, the filters would be:

tc filter add dev ethO protocol ip parent 10: prio 1 u32 match \
ip dport 22 Oxffff flowid 10:1

tc filter add dev ethO protocol ip parent 10: prio 1 u32 match \
ip sport 80 Oxffff flowid 10:1

tc filter add dev ethO protocol ip parent 10: prio 2 flowid 10:2

What does this say? It says: attach to eth0, node 10: a priority 1 u32 filter that matches on IP destination po
22 *exactly* and send it to band 10:1. And it then repeats the same for source port 80. The last command s:
that anything unmatched so far should go to band 10:2, the next—highest priority.

You need to add 'ethQ', or whatever your interface is called, because each interface has a unique namespac
handles.

To select on an IP address, use this:

tc filter add dev ethO parent 10:0 protocol ip prio 1 u32\
match ip dst 4.3.2.1/32 flowid 10:1

tc filter add dev ethO parent 10:0 protocol ip prio 1 u32\
match ip src 1.2.3.4/32 flowid 10:1

tc filter add dev ethO protocol ip parent 10: prio 2\
flowid 10:2

This assigns traffic to 4.3.2.1 and traffic from 1.2.3.4 to the highest priority queue, and the rest to the
next-highest one.

You can concatenate matches, to match on traffic from 1.2.3.4 and from port 80, do this:

Chapter 9. Queueing Disciplines for Bandwidth Management 43

Linux Advanced Routing & Traffic Control HOWTO

tc filter add dev ethO parent 10:0 protocol ip prio 1 u32 match ip src 4.3.2.1/32
match ip sport 80 Oxffff flowid 10:1

9.6.2. All the filtering commands you will normally need

Most shaping commands presented here start with this preamble:

|# tc filter add dev ethO parent 1:0 protocol ip prio 1 u32 ..

These are the so called 'u32' matches, which can match on ANY part of a packet.

On source/destination address
Source mask 'match ip src 1.2.3.0/24', destination mask 'match ip dst 4.3.2.0/24'. To match a single
host, use /32, or omit the mask.

On source/destination port, all IP protocols
Source: 'match ip sport 80 0xffff', 'match ip dport Oxffff'

On ip protocol (tcp, udp, icmp, gre, ipsec)
Use the numbers from /etc/protocols, for example, icmp is 1: 'match ip protocol 1 Oxff'.

On fwmark
You can mark packets with either ipchains and have that mark survive routing across interfaces. Thit
is really useful to for example only shape traffic on ethl that came in on ethO. Syntax: # tc filter add
dev ethl protocol ip parent 1:0 prio 1 handle 6 fw flowid 1:1 Note that this is not a u32 match!

You can place a mark like this:

|# iptables —A PREROUTING -t mangle —i ethO —j MARK —-set-mark 6

The number 6 is arbitrary.

If you don't want to understand the full tc filter syntax, just use iptables, and only learn to select on
fwmark.

On the TOS field
To select interactive, minimum delay traffic:

tc filter add dev ppp0 parent 1:0 protocol ip prio 10 u32\
match ip tos 0x10 Oxff \
flowid 1:4

Use 0x08 0xff for bulk traffic.

For more filtering commands, see the Advanced Filters chapter.

9.7. The Intermediate queueing device (IMQ)

The Intermediate queueing device is not a qdisc but its usage is tightly bound to gdiscs. Within linux, gdiscs
are attached to network devices and everything that is queued to the device is first queued to the qdisc. Frol
this concept, two limitations arise:

1. Only egress shaping is possible (an ingress qdisc exists, but its possibilities are very limited compared to
classful gdiscs).

Chapter 9. Queueing Disciplines for Bandwidth Management 44

Linux Advanced Routing & Traffic Control HOWTO

2. A gdisc can only see traffic of one interface, global limitations can't be placed.

IMQ is there to help solve those two limitations. In short, you can put everything you choose in a qdisc.
Specially marked packets get intercepted in netfilter NF_IP_PRE_ROUTING and NF_IP_POST_ROUTING
hooks and pass through the gdisc attached to an imq device. An iptables target is used for marking the
packets.

This enables you to do ingress shaping as you can just mark packets coming in from somewhere and/or tre:
interfaces as classes to set global limits. You can also do lots of other stuff like just putting your http traffic ir
a gdisc, put new connection requests in a qdisc, ...

9.7.1. Sample configuration

The first thing that might come to mind is use ingress shaping to give yourself a high guaranteed bandwidth.
Configuration is just like with any other interface:

tc qdisc add dev imqgO root handle 1: htb default 20
tc class add dev imqO parent 1: classid 1:1 htb rate 2mbit burst 15k

tc class add dev imqO parent 1:1 classid 1:10 htb rate 1mbit
tc class add dev imqO parent 1:1 classid 1:20 htb rate 1mbit

tc qdisc add dev img0 parent 1:10 handle 10: pfifo
tc qdisc add dev img0 parent 1:20 handle 20: sfq

tc filter add dev imq0 parent 10:0 protocol ip prio 1 u32 match \
ip dst 10.0.0.230/32 flowid 1:10

In this example u32 is used for classification. Other classifiers should work as expected. Next traffic has to k
selected and marked to be enqueued to imqO.

iptables -t mangle —A PREROUTING -i ethO —j IMQ ——todev 0

ip link set imq0 up
The IMQ iptables targets is valid in the PREROUTING and POSTROUTING chains of the mangle table. It's
syntax is

|IMQ [——todev n] n : number of imqg device |

An ip6tables target is also provided.

Please note traffic is not enqueued when the target is hit but afterwards. The exact location where traffic
enters the imq device depends on the direction of the traffic (infout). These are the predefined netfilter hook:
used by iptables:

enum nf_ip_hook_priorities {
NF_IP_PRI_FIRST = INT_MIN,
NF_IP_PRI_CONNTRACK = -200,
NF_IP_PRI_MANGLE = -150,
NF_IP_PRI_NAT_DST = -100,
NF_IP_PRI_FILTER =0,
NF_IP_PRI_NAT_SRC = 100,
NF_IP_PRI_LAST = INT_MAX,

Chapter 9. Queueing Disciplines for Bandwidth Management 45

Linux Advanced Routing & Traffic Control HOWTO

|}; |

For ingress traffic, imq registers itself with NF_IP_PRI_MANGLE + 1 priority which means packets enter the
imq device directly after the mangle PREROUTING chain has been passed.

For egress imq uses NF_IP_PRI_LAST which honours the fact that packets dropped by the filter table won't
occupy bandwidth.

The patches and some more information can be found_at the imq site.

Chapter 9. Queueing Disciplines for Bandwidth Management 46

http://luxik.cdi.cz/~patrick/imq/

Chapter 10. Load sharing over multiple interfaces

There are several ways of doing this. One of the easiest and straightforward ways is 'TEQL' — "True" (or
"trivial") link equalizer. Like most things having to do with queueing, load sharing goes both ways. Both ends
of a link may need to participate for full effect.

Imagine this situation:

A and B are routers, and for the moment we'll assume both run Linux. If traffic is going from network 1 to
network 2, router A needs to distribute the packets over both links to B. Router B needs to be configured to
accept this. Same goes the other way around, when packets go from network 2 to network 1, router B need:
send the packets over both ethl and eth2.

The distributing part is done by a 'TEQL' device, like this (it couldn't be easier):

tc qdisc add dev ethl root teqlO
tc qdisc add dev eth2 root teqlO
ip link set dev teqlO up

Don't forget the 'ip link set up' command!

This needs to be done on both hosts. The device teql0 is basically a roundrobbin distributor over ethl and
eth2, for sending packets. No data ever comes in over an teql device, that just appears on the 'raw' eth1 anc
eth2.

But now we just have devices, we also need proper routing. One way to do this is to assign a /31 network to
both links, and a /31 to the teqlO device as well:

FIXME: does this need something like 'nobroadcast'? A /31 is too small to house a network address and a
broadcast address - if this doesn't work as planned, try a /30, and adjust the ip addresses accordingly. You
might even try to make eth1 and eth2 do without an IP address!

On router A:

ip addr add dev eth1 10.0.0.0/31
ip addr add dev eth2 10.0.0.2/31
ip addr add dev teqgl0 10.0.0.4/31

On router B:

ip addr add dev ethl1 10.0.0.1/31
ip addr add dev eth2 10.0.0.3/31
ip addr add dev teqgl0 10.0.0.5/31

Router A should now be able to ping 10.0.0.1, 10.0.0.3 and 10.0.0.5 over the 2 real links and the 1 equalize
device. Router B should be able to ping 10.0.0.0, 10.0.0.2 and 10.0.0.4 over the links.

Chapter 10. Load sharing over multiple interfaces 47

Linux Advanced Routing & Traffic Control HOWTO

If this works, Router A should make 10.0.0.5 its route for reaching network 2, and Router B should make
10.0.0.4 its route for reaching network 1. For the special case where network 1 is your network at home, anc
network 2 is the Internet, Router A should make 10.0.0.5 its default gateway.

10.1. Caveats

Nothing is as easy as it seems. ethl and eth2 on both router A and B need to have return path filtering turne
off, because they will otherwise drop packets destined for ip addresses other than their own:

echo 0 > /proc/net/ipv4/conflethl/rp_filter
echo 0 > /proc/net/ipv4/confleth2/rp_filter

Then there is the nasty problem of packet reordering. Let's say 6 packets need to be sent from A to B — eth!
might get 1, 3 and 5. eth2 would then do 2, 4 and 6. In an ideal world, router B would receive this in order, 1
2, 3, 4, 5, 6. But the possibility is very real that the kernel gets it like this: 2, 1, 4, 3, 6, 5. The problem is that
this confuses TCP/IP. While not a problem for links carrying many different TCP/IP sessions, you won't be
able to to a bundle multiple links and get to ftp a single file lots faster, except when your receiving or sending
OS is Linux, which is not easily shaken by some simple reordering.

However, for lots of applications, link load balancing is a great idea.

10.2. Other possibilities

William Stearns has used an advanced tunneling setup to achieve good use of multiple, unrelated, internet
connections together. It can be found_on his tunneling page.

The HOWTO may feature more about this in the future.

Chapter 10. Load sharing over multiple interfaces 48

http://www.stearns.org/tunnel/

Chapter 11. Netfilter & iproute — marking packets

So far we've seen how iproute works, and netfilter was mentioned a few times. This would be a good time tc
browse through Rusty's Remarkably Unreliable Guides. Netfilter itself can be found here.

Netfilter allows us to filter packets, or mangle their headers. One special feature is that we can mark a packe
with a number. This is done with the ——set—mark facility.

As an example, this command marks all packets destined for port 25, outgoing mail:

iptables —A PREROUTING -i ethO -t mangle —p tcp ——dport 25\
—-j MARK ——set—-mark 1

Let's say that we have multiple connections, one that is fast (and expensive, per megabyte) and one that is
slower, but flat fee. We would most certainly like outgoing mail to go via the cheap route.

We've already marked the packets with a '1', we now instruct the routing policy database to act on this:

echo 201 mail.out >> /etc/iproute2/rt_tables
ip rule add fwmark 1 table mail.out

#ip rule Is

0: from all lookup local

32764: from all fwmark 1 lookup mail.out
32766: from all lookup main

32767: from all lookup default

Now we generate the mail.out table with a route to the slow but cheap link:

|# /sbin/ip route add default via 195.96.98.253 dev ppp0 table mail.out |

And we are done. Should we want to make exceptions, there are lots of ways to achieve this. We can modif
the netfilter statement to exclude certain hosts, or we can insert a rule with a lower priority that points to the
main table for our excepted hosts.

We can also use this feature to honour TOS bits by marking packets with a different type of service with
different numbers, and creating rules to act on that. This way you can even dedicate, say, an ISDN line to
interactive sessions.

Needless to say, this also works fine on a host that's doing NAT (‘masquerading’).

IMPORTANT: We received a report that MASQ and SNAT at least collide with marking packets. Rusty
Russell explains it in_this posting. Turn off the reverse path filter to make it work properly.

Note: to mark packets, you need to have some options enabled in your kernel:

IP: advanced router (CONFIG_IP_ADVANCED_ROUTER) [Y/n/?]
IP: policy routing (CONFIG_IP_MULTIPLE_TABLES) [Y/n/?]
IP: use netfilter MARK value as routing key (CONFIG_IP_ROUTE_FWMARK) [Y/n/?]

See also the Section 15.5 in_the Cookbook.

Chapter 11. Netfilter & iproute — marking packets 49

http://netfilter.samba.org/unreliable-guides/
http://netfilter.filewatcher.org/
http://lists.samba.org/pipermail/netfilter/2000-November/006089.html

Chapter 12. Advanced filters for (re—)classifying
packets

As explained in the section on classful queueing disciplines, filters are needed to classify packets into any o
the sub—queues. These filters are called from within the classful gdisc.

Here is an incomplete list of classifiers available:

fw
Bases the decision on how the firewall has marked the packet. This can be the easy way out if you
don't want to learn tc filter syntax. See the Queueing chapter for details.

u32
Bases the decision on fields within the packet (i.e. source IP address, etc)

route
Bases the decision on which route the packet will be routed by

rsvp, rsvp6
Routes packets based_on RSVP . Only useful on networks you control — the Internet does not respec
RSVP.

tcindex

Used in the DSMARK qdisc, see the relevant section.

Note that in general there are many ways in which you can classify packet and that it generally comes dowr
preference as to which system you wish to use.

Classifiers in general accept a few arguments in common. They are listed here for convenience:

protocol

The protocol this classifier will accept. Generally you will only be accepting only IP traffic. Required.
parent

The handle this classifier is to be attached to. This handle must be an already existing class. Require
prio

The priority of this classifier. Lower numbers get tested first.
handle

This handle means different things to different filters.

All the following sections will assume you are trying to shape the traffic going to HostA. They will assume
that the root class has been configured on 1: and that the class you want to send the selected traffic to is 1::

12.1. The u32 classifier

The U32 filter is the most advanced filter available in the current implementation. It entirely based on hashin
tables, which make it robust when there are many filter rules.

In its simplest form the U32 filter is a list of records, each consisting of two fields: a selector and an action.
The selectors, described below, are compared with the currently processed IP packet until the first match
occurs, and then the associated action is performed. The simplest type of action would be directing the pac
into defined CBQ class.

Chapter 12. Advanced filters for (re—)classifying packets 50

http://www.isi.edu/div7/rsvp/overview.html

Linux Advanced Routing & Traffic Control HOWTO

The command line of tc filter program, used to configure the filter, consists of three parts: filter
specification, a selector and an action. The filter specification can be defined as:

tc filter add dev IF [protocol PROTO]
[(preference|priority) PRIO]
[parent CBQ]

The protocol field describes protocol that the filter will be applied to. We will only discuss case of ip
protocol. The preference field (priority can be used alternatively) sets the priority of currently defined

filter. This is important, since you can have several filters (lists of rules) with different priorities. Each list will
be passed in the order the rules were added, then list with lower priority (higher preference number) will be
processed. The parent field defines the CBQ tree top (e.g. 1:0), the filter should be attached to.

The options described above apply to all filters, not only U32.

12.1.1. U32 selector

The U32 selector contains definition of the pattern, that will be matched to the currently processed packet.
Precisely, it defines which bits are to be matched in the packet header and nothing more, but this simple
method is very powerful. Let's take a look at the following examples, taken directly from a pretty complex,
real-world filter:

tc filter add dev ethO protocol ip parent 1:0 pref 10 u32\
match u32 00100000 00ff0000 at O flowid 1:10

For now, leave the first line alone — all these parameters describe the filter's hash tables. Focus on the sele
line, containing match keyword. This selector will match to IP headers, whose second byte will be 0x10
(0010). As you can guess, the 00ff number is the match mask, telling the filter exactly which bits to match.
Here it's 0xff, so the byte will match if it's exactly 0x10. The at keyword means that the match is to be starte
at specified offset (in bytes) —— in this case it's beginning of the packet. Translating all that to human
language, the packet will match if its Type of Service field will have “low delay' bits set. Let's analyze anothe
rule:

tc filter add dev ethO protocol ip parent 1:0 pref 10 u32\
match u32 00000016 0000ffff at nexthdr+0 flowid 1:10

The nexthdr option means next header encapsulated in the IP packet, i.e. header of upper—layer protocol.
The match will also start here at the beginning of the next header. The match should occur in the second,
32-bit word of the header. In TCP and UDP protocols this field contains packet's destination port. The
number is given in big—endian format, i.e. older bits first, so we simply read 0x0016 as 22 decimal, which
stands for SSH service if this was TCP. As you guess, this match is ambiguous without a context, and we w
discuss this later.

Having understood all the above, we will find the following selector quite easy to read: match c0a80100
ffffff00 at 16. What we got here is a three byte match at 17-th byte, counting from the IP header start.

This will match for packets with destination address anywhere in 192.168.1/24 network. After analyzing the
examples, we can summarize what we have learned.

Chapter 12. Advanced filters for (re—)classifying packets 51

Linux Advanced Routing & Traffic Control HOWTO

12.1.2. General selectors

General selectors define the pattern, mask and offset the pattern will be matched to the packet contents. Us
the general selectors you can match virtually any single bit in the IP (or upper layer) header. They are more
difficult to write and read, though, than specific selectors that described below. The general selector syntax |

Imatch [u32 | u16 | ug] PATTERN MASK [at OFFSET | nexthdr+OFFSET] |

One of the keywords u32, ul6 or u8 specifies length of the pattern in bits. PATTERN and MASK should
follow, of length defined by the previous keyword. The OFFSET parameter is the offset, in bytes, to start
matching. If nexthdr+ keyword is given, the offset is relative to start of the upper layer header.

Some examples:

tc filter add dev pppl14 parent 1:0 prio 10 u32 \
match u8 64 Oxff at 8 \
flowid 1:4

Packet will match to this rule, if its time to live (TTL) is 64. TTL is the field starting just after 8—th byte of the
IP header.

tc filter add dev pppl14 parent 1:0 prio 10 u32 \
match u8 0x10 Oxff at nexthdr+13 \
protocol tcp \
flowid 1:3

FIXME: it has been pointed out that this syntax does not work currently.

Use this to match ACKs on packets smaller than 64 bytes:

match acks the hard way,
|P protocol 6,
|P header length 0x5(32 bit words),
IP Total length 0x34 (ACK + 12 bytes of TCP options)
TCP ack set (bit 5, offset 33)
tc filter add dev ppp14 parent 1:0 protocol ip prio 10 u32\
match ip protocol 6 Oxff \
match u8 0x05 0xOf at 0 \
match ul6 0x0000 0xffcO at 2 \
match u8 0x10 Oxff at 33 \
flowid 1:3

This rule will only match TCP packets with ACK bit set, and no further payload. Here we can see an exampl
of using two selectors, the final result will be logical AND of their results. If we take a look at TCP header
diagram, we can see that the ACK bit is second older bit (0x10) in the 14-th byte of the TCP header (at
nexthdr+13). As for the second selector, if we'd like to make our life harder, we could write match u8

0x06 Oxff at 9 instead of using the specific selector protocol tcp, because 6 is the number of TCP

protocol, present in 10-th byte of the IP header. On the other hand, in this example we couldn't use any
specific selector for the first match — simply because there's no specific selector to match TCP ACK hbits.

Chapter 12. Advanced filters for (re—)classifying packets 52

Linux Advanced Routing & Traffic Control HOWTO
12.1.3. Specific selectors

The following table contains a list of all specific selectors the author of this section has found in the tc
program source code. They simply make your life easier and increase readability of your filter's configuratior

FIXME: table placeholder — the table is in separate file ,,selector.html"
FIXME: it's also still in Polish :—(
FIXME: must be sgml'ized

Some examples:

tc filter add dev ppp0 parent 1:0 prio 10 u32 \
match ip tos 0x10 Oxff \
flowid 1:4

FIXME: tcp dst match does not work as described below:

The above rule will match packets which have the TOS field set to 0x10. The TOS field starts at second byt
of the packet and is one byte big, so we could write an equivalent general selector: match u8 0x10 Oxff

at 1. This gives us hint to the internals of U32 filter —— the specific rules are always translated to general
ones, and in this form they are stored in the kernel memory. This leads to another conclusion —— the tcp anc
udp selectors are exactly the same and this is why you can't use single match tcp dst 53 Oxffff

selector to match TCP packets sent to given port —— they will also match UDP packets sent to this port. You
must remember to also specify the protocol and end up with the following rule:

tc filter add dev pppO parent 1:0 prio 10 u32 \
match tcp dst 53 Oxffff \
match ip protocol 0x6 0xff \
flowid 1:2

12.2. The route classifier

This classifier filters based on the results of the routing tables. When a packet that is traversing through the
classes reaches one that is marked with the "route" filter, it splits the packets up based on information in the
routing table.

|# tc filter add dev ethl parent 1:0 protocol ip prio 100 route |

Here we add a route classifier onto the parent node 1:0 with priority 100. When a packet reaches this node
(which, since it is the root, will happen immediately) it will consult the routing table and if one matches will
send it to the given class and give it a priority of 100. Then, to finally kick it into action, you add the
appropriate routing entry:

The trick here is to define 'realm' based on either destination or source. The way to do it is like this:

|# ip route add Host/Network via Gateway dev Device realm RealmNumber |

For instance, we can define our destination network 192.168.10.0 with a realm number 10:

Chapter 12. Advanced filters for (re—)classifying packets 53

Linux Advanced Routing & Traffic Control HOWTO

l# ip route add 192.168.10.0/24 via 192.168.10.1 dev ethl realm 10 |

When adding route filters, we can use realm numbers to represent the networks or hosts and specify how th
routes match the filters.

tc filter add dev ethl parent 1:0 protocol ip prio 100 \
route to 10 classid 1:10

The above rule says packets going to the network 192.168.10.0 match class id 1:10.

Route filter can also be used to match source routes. For example, there is a subnetwork attached to the Lir
router on eth2.

ip route add 192.168.2.0/24 dev eth2 realm 2
tc filter add dev ethl parent 1:0 protocol ip prio 100 \
route from 2 classid 1:2

Here the filter specifies that packets from the subnetwork 192.168.2.0 (realm 2) will match class id 1:2.

12.3. Policing filters

To make even more complicated setups possible, you can have filters that only match up to a certain
bandwidth. You can declare a filter to entirely cease matching above a certain rate, or only to not match only
the bandwidth exceeding a certain rate.

So if you decided to police at 4mbit/s, but 5mbit/s of traffic is present, you can stop matching either the entir
5mbit/s, or only not match 1mbit/s, and do send 4mbit/s to the configured class.

If bandwidth exceeds the configured rate, you can drop a packet, reclassify it, or see if another filter will
match it.

12.3.1. Ways to police

There are basically two ways to police. If you compiled the kernel with 'Estimators’, the kernel can measure
for each filter how much traffic it is passing, more or less. These estimators are very easy on the CPU, as th
simply count 25 times per second how many data has been passed, and calculate the bitrate from that.

The other way works again via a Token Bucket Filter, this time living within your filter. The TBF only
matches traffic UP TO your configured bandwidth, if more is offered, only the excess is subject to the
configured overlimit action.

12.3.1.1. With the kernel estimator

This is very simple and has only one parameter: avrate. Either the flow remains below avrate, and the filter
classifies the traffic to the classid configured, or your rate exceeds it in which case the specified action is
taken, which is 'reclassify' by default.

The kernel uses an Exponential Weighted Moving Average for your bandwidth which makes it less sensitive
to short bursts.

Chapter 12. Advanced filters for (re—)classifying packets 54

Linux Advanced Routing & Traffic Control HOWTO
12.3.1.2. With Token Bucket Filter

Uses the following parameters:

* buffer/maxburst
* mtu/minburst

* mpu

* rate

Which behave mostly identical to those described in the Token Bucket Filter section. Please note however t
if you set the mtu of a TBF policer too low, *no* packets will pass, whereas the egress TBF gdisc will just
pass them slower.

Another difference is that a policer can only let a packet pass, or drop it. It cannot delay hold on to it in ordet
to delay it.

12.3.2. Overlimit actions

If your filter decides that it is overlimit, it can take 'actions'. Currently, three actions are available:

continue
Causes this filter not to match, but perhaps other filters will.

drop
This is a very fierce option which simply discards traffic exceeding a certain rate. It is often used in
the ingress policer and has limited uses. For example, you may have a name server that falls over if
offered more than 5mbit/s of packets, in which case an ingress filter could be used to make sure no
more is ever offered.

Pass/OK
Pass on traffic ok. Might be used to disable a complicated filter, but leave it in place.

reclassify

Most often comes down to reclassification to Best Effort. This is the default action.

12.3.3. Examples
The only real example known is mentioned in the 'Protecting your host from SYN floods' section.

FIXME: if you have used this, please share your experience with us

12.4. Hashing filters for very fast massive filtering

If you have a need for thousands of rules, for example if you have a lot of clients or computers, all with
different QoS specifications, you may find that the kernel spends a lot of time matching all those rules.

By default, all filters reside in one big chain which is matched in descending order of priority. If you have
1000 rules, 1000 checks may be needed to determine what to do with a packet.

Matching would go much quicker if you would have 256 chains with each four rules - if you could divide
packets over those 256 chains, so that the right rule will be there.

Chapter 12. Advanced filters for (re—)classifying packets 55

Linux Advanced Routing & Traffic Control HOWTO

Hashing makes this possible. Let's say you have 1024 cable modem customers in your network, with IP
addresses ranging from 1.2.0.0 to 1.2.3.255, and each has to go in another bin, for example 'lite’, 'regular’ al
‘premium’. You would then have 1024 rules like this:

tc filter add dev ethl parent 1:0 protocol ip prio 100 match ip src \
1.2.0.0 classid 1:1

tc filter add dev ethl parent 1:0 protocol ip prio 100 match ip src \
1.2.0.1 classid 1:1

tc filter add dev ethl parent 1:0 protocol ip prio 100 match ip src \
1.2.3.254 classid 1:3

tc filter add dev ethl parent 1:0 protocol ip prio 100 match ip src \
1.2.3.255 classid 1:2

To speed this up, we can use the last part of the IP address as a 'hash key'. We then get 256 tables, the firs
which looks like this:

tc filter add dev ethl parent 1:0 protocol ip prio 100 match ip src \
1.2.0.0 classid 1:1

tc filter add dev ethl parent 1:0 protocol ip prio 100 match ip src \
1.2.1.0 classid 1:1

tc filter add dev ethl parent 1:0 protocol ip prio 100 match ip src \
1.2.2.0 classid 1:3

tc filter add dev ethl parent 1:0 protocol ip prio 100 match ip src \
1.2.3.0 classid 1:2

The next one starts like this:

tc filter