
Scaling Monolithic Kernels
Intel OS Forum
November 9th, 2006.

Christoph Lameter,
SGI

How well does a monolithic kernel scale? In particular 
how well does it scale compared to micro kernels? We 
discuss some performance data points of a 1024 
processor system running Linux and then explain how 
Linux is able to scale that well. Most of the methods 
presented here are likely to be useful in the future to 
support processors with more and more cores. I can only 
talk about micro kernel issues on a theoretical level here 
since I have no experience with (nor do I know of) 
comparable installations using micro kernels.



Page fault scaling @1024p
● SGI Altix System with 1024 nodes, 4 Terabyte main 

memory, 6.4 GB/s switched NUMA interlink fabric. This is 
the largest installation to date. Other more widely 
deployed configurations are 512p, 64p and 32p.

● 1024p configuration is SuSE Linux certified.

● Tests shown here are for 1p per node (Itanium Madison 
9M). The system has now been upgraded to run with 4p 
(Montecito processors) per node and is now a 4096p 
system (performance numbers not available yet).

● The following diagrams show the time it takes to allocate 
100 megabytes per process using 16k pages (higher 
allocation rates are available when using 256M pages).



100 M allocations using 
separate processes

1 2 4 8 16 32 64 128 256 512 1024
0

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0.1

0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18



100 M allocations using a 
shared address space

1 2 4 8 16 32 64 128 256 512 1024
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16



Micro Kernel
● Sadly no scaling data is available. There are comparisons for 

“nodes” (cluster nodes) that do not have a shared address 
space. This likely means that the issues coming with large 
address space have not yet been addressed for micro kernels.

● Micro kernel IPC requires transfers of messages via memory 
when communicating between different servers. There is a 
potential for high overhead and a problem of where to place the 
memory. IPC optimizations may result in portability issues.

● Advantage of failing servers not crashing the system. But the 
applications using the failing server likely also have to be taken 
down since a loss of state occurs.

● Advantage for isolation of device drivers. Ability to recover from 
faulty device drivers. Restrict what device drivers can do.



Monolithic OS
● Avoidance of context switches and memory based 

transfers. The integration of functionality allows more 
flexibility in the choice of how to implement Operating 
System functionality.

● Device drivers can be made loadable. Device driver 
control could be enhanced by running some drivers at 
other privilege levels. Then we need to deal with 
overhead for a transition to a different priviledge level. 
Modularization is not incompatible with the idea of a 
monolithic OS.

● Complexity: Dealt with by using modularization and 
abstractions at various levels that is independent from a 
processors execution context.

●



VMM + Monolithic OS
● Avoids Micro kernel IPC 

performance issues

● Multiple OS'es on one 
machine.

● RAS, Check pointing

● Advantages for 
Software Development

● Potential faster 
bootstrap. Check point 
boot.

● OS gets served an 
illusion instead of a real 
machine.

● Difficulty of integration 
with OS

● Portability. VMM is very 
near to the hardware.

● Performance problems

● OS experiences a loss of 
control of hardware.



How Linux scales to high 
processor counts

● Per cpu areas globally or nested in other structures.

● Per node structures.

● Memory allocators aware of the distance to memory.

● Lock splitting by rewriting kernel subsystems.

● Independent structures.

● Cache line optimizations.

● Memory allocation control for a process or a set of 
processes.



Linux Scaling Challenges
● Larger Systems (>64p) 

have issues with the file 
I/O since lock optimization 
has not yet been 
performed for inode and 
dentry cache.

● Number of TLB entries for 
large memory sets limits 
on performance.

● TLB pressure is avoided 
through huge pages. But 
huge pages cannot be 
fully supported by the 
VM.

● NUMA logic must evolve 
to keep up with scaling.

● A few per processor and 
per node areas grow by 
the power of two.

● Distance issues: The 
larger the system the 
larger the latencies.

● Sparsely populated per 
node and per cpu areas.



How to get to 4kp / 64kp
● Avoid power of 2 scaling for processors through redesign 

of some subsystems.

● MTBF increases with a significant amount of processors 
and nodes Allow processors/nodes to fail and be 
restarted. This requires more advanced support for a 
processes memory to be migrated to other nodes.

● Replication of kernel text and data segment to limit 
distance to code being executed (About a 40% win for 
some applications).

● Replication of page cache pages that are frequently 
accessed.



Lock Locality
● Exclusive cache lines need to be acquired for locking.
● The larger the system the longer the distance to those 

cache lines and thus the less efficient locking becomes.
● Exclusive cache line transfers become expensive. We 

need to manage the locality of those cache lines. If the 
cache line is acquired by a node with several processors 
then these processes should all acquire the lock and do 
their work before we release the cache line for use on a 
different node.

● Locks may need to be migrated to the node closest to 
frequent users of a lock.

● Hierarchical Backoff locks have been pioneered by Zoran 
Radovic for this purpose and give a starting point for 
improved lock scaling.



Replication of memory
● Reduce distance of processors to important control 

information by having it in multiple locations in the 
system.

● Easy to duplicate read only areas through virtual 
mappings.

● Mostly read only data needs to have a mechanism 
that allows a controlled update of configuration 
values.

● Difficulties of replicating page cache due to 1-1 
assumption. Could be complex to dirty a replicated 
page.



CMP scaling issues
● Multicore/Threading is a standard feature of 

processors.

● Likely result will be additional problems with 
saturated memory buses. 

● Memory takes on NUMA characteristics. Performance 
varies depending on which path is taken to memory.

● Challenge of distribution of the processing load over 
various processor resources.

● The complexity of the Linux scheduler increases.



General MP scaling issues
● Sharing bad, local good, but sharing is required.

● Independent execution context are important.

● Per cpu gives good locality and avoids locking

● Per node gives good locality and localizes locks.

● Latencies depending on the distance. Need for tighter 
packing of processors in a system.

● But larger distances allow larger systems.

● The bigger the system the more distant most of the 
memory becomes.



VMM scaling issues
● Potentiality of new bottlenecks due to necessity of 

locking within the VMM.

● Slow operations since certain information may have to 
be mirrored (Shadow page tables).

● Operations that were not serialized suddenly may 
become serialized (f.e. locking for shadow pages).

● VMM frequently must control I/O. Thus it may limit I/O 
throughput. Maybe IOMMUs will improve that situation?

● Time is not running smoothly anymore. Some VMMs 
maintain multiple timers and attempt to guess what the 
OS is doing before providing time.



Conclusion
● I am not sure why we still need to discuss Micro 

kernels. Problems are well known and projects are 
either abandoned or have some market niche 
(QNX?).

● Monolithic kernels have withstood the test of time 
and have adapted to the growing size of systems. 
There is no indication of scaling limits.

● Monolithic kernels can support modularization in 
various forms.

● The role of VMM is still TBD. Too much hot talk that 
needs to cool down first.


