
2007-06-30

Ottawa Linux Symposium

Christoph Lameter, Ph.D.
christoph@lameter.com
Technical Lead Linux Kernel Software
Silicon Graphics, Inc.

Extreme High Performance Computing 
or Why Microkernels Suck



2

Introduction

Short intro to High Performance Computing
How high does Linux currently scale
Conceptual comparison: microkernel and monolithic 
OS (Linux)
Fundamental scaling problems of a microkernel based 
architecture
Monolithic kernel are also modular
Why does Linux scale so well and adapt to ever larger 
and more complex machines
Current issues
Conclusion: Microkernel is an idea taken to unhealthy 
extremes.



3

Applications of High Performance Computing

Solve complex computationally expensive problems
Scientific Research

Physics (quantum mechanics, nuclear phenomena)
Cosmology
Space
Biology (gene analysis, virus, bacteria etc)

Simulations
Weather (Hurricanes)
Study of molecules and new substances

Complex data analysis
3D design

Interactive modeling (f.e. car design, aircraft design)
Structural analysis.



4

Dark Matter Halo Simulation for the Milky Way



5

Black Hole Simulation



6

Carbon Nanotube-polymer composite material



7

Forecast of Hurricane Katrina



8

Airflow Simulations



9

High Performance Computer Architectures

Supercomputer
Single memory space
NUMA architecture. Memory nodes / Distant memory.
Challenge to scale the Operating System

Cluster
Multiple memory spaces
Networked commodity servers
Network communication critical for performance
Challenge to redesign applications for a cluster

Mainframe
Singe uniform memory space with multiple processors
Scalable I/O subsystem
Mainly targeted to I/O transactions
Reliable and maintainable (24 by 7 availability)



10

NASA Columbia Supercomputer with 10240 
processors



11

Current Maximum Scaling of a single Linux Kernel

This is no cluster
Single address space
Processes communicate using shared memory

Currently deployed configurations
Single kernel boots 1024 processors
8 Terabyte of main memory
10GB/sec I/O throughput

Known working configurations
4096 processors
256TB memory

Next generation platform
16384 processors
4-8 Petabyte (2^50 bytes) Memory



12

Monolithic kernel vs micro kernel

Application

Monolithic OS

Hardware

Application

Server Server

Driver

Server

Hardware

Server

Driver
Hardware



13

Microkernels vs. Monolithic

Microkernel claims
Essential to deal with scalability issues.
Allow a better designed system
Essential to deal with complexity of large Operating 
systems
Make the system work reliable

However
Large scale microkernel systems do not exist
Research systems exist up to 24p (an unconfirmed 
rumors about 64p).

IPC overhead vs. Monolithic kernels function calls
Need for context switches within the kernel
Transfer issues of messages.
Significant effort is spend on optimizing around these.



14

Isolation vs. Integration

Microkernel isolates kernel components
More secure from failure
Defined API to between components of a kernel

Monolithic OS
Large potentially complex code
Universal access to data
API implicitly established by function call convention

Difficulty of keeping application state in Microkernels
Performance issues by not having direct access to 
relevant data from other subsystems.
Monolithic OS like Linux also have isolation methods

Source code modularization
Binary modules



15

APIs

Monolithic kernel has flexible APIs if no binary APIs 
are supported like in Linux
Microkernel must attempt to standardize on APIs to 
ensure that operating system components can be 
replaced.
Thus a monolithic kernel can evolve faster than 
microkernel.



16

Competing technologies within a Monolithic Kernel

Variety of locks that can be used to architect 
synchronization methods

Atomic operations
Reference counts
Read Copy Update
Spinlocks
Semaphores

New Approaches to locking are frequently introduces 
to solve particular hard issues.



17

Scaling up Linux

Per cpu areas
Per node structures
Memory allocators aware of distance to memory
Lock splitting
Cache line optimization
Memory allocation control from user space
Sharing is a problem
Local Memory is the best
Larger distances mean larger systems are possible
The bigger the system the smaller the portion of local 
memory.



18

Single Processor System

Processor

I/O
Subsystem

 Memory

Cachelines 

All computation on a 
single processor
Only parallelism that 
needs to be managed is 
with the I/O subsystem
Memory is slow 
compared to the 
processor.
Speed of the system 
depends on the 
effectiveness of the 
cache
Memory accesses have 
the same performance.



19

Symmetric Multi Processing (SMP)

Multiple processors
New need for 
synchronization between 
processors
Cache control issues
Performance enhancement 
through multiple processors 
working independently
Cacheline contention
Data layout challenges: 
shared vs. processor local
All memory access have 
the same performance

CPU 1

 Memory

CPU 2

Cachelines 

Storage
Subsystem



20

Non Uniform Memory Architecture (NUMA)

CPU 1 Remote Memory

CPU 2 Cachelines 

N
U

M
A

 In
te

rc
on

ne
ct

Node 1

CPU 3 Local Memory

CPU 4 Cachelines 

Node 2

CPU 5 Remote Memory

CPU 6 Cachelines 

Node 3

CPU 7 Remote Memory

CPU 8 Cachelines 

Node 4

Storage
Subsystem

Network
Interface

• Multiple SMP like sys-
tems called “nodes”

• Memory at various dis-
tances (NUMA)

• Interconnect
• MESI type cache co-

herency protocols
• SLIT tables
• Memory Placement
• Node Local from node 

2 processor 3
• Device Local



21

Allocators for a Uniform Memory Architecture

Page Chunks
Page allocator
Anonymous memory
File backed memory
Swapping
Slab allocator
Device DMA allocator
Page Cache
read() / write()
Mmapped I/O.

Process
Memory

Page
Allocator

PCI
Subsystem

Slab
allocator

Vmalloc

Anonymous
PagesPage Cache

Buffers

Device Drivers
Kernel Core



22

NUMA Allocators

Memory management per node
Memory state and possibilities of allocation
Traversal of the zonelist (or nodelist)
Process location vs. memory allocation
Scheduler interactions
Predicting memory use?
Memory load balancing
Support to shift the memory load


