[mm-only] Remove the slab allocator Tentatively remove the SLAB allocator. We are still waiting for regression tests so keep this in mm for now. Signed-off-by: Christoph Lameter --- fs/proc/proc_misc.c | 47 include/linux/slab.h | 17 init/Kconfig | 10 lib/Kconfig.debug | 17 mm/Makefile | 1 mm/slab.c | 4481 --------------------------------------------------- 6 files changed, 8 insertions(+), 4565 deletions(-) Index: linux-2.6.24-rc3-mm2/include/linux/slab.h =================================================================== --- linux-2.6.24-rc3-mm2.orig/include/linux/slab.h 2007-11-16 21:16:36.000000000 -0800 +++ linux-2.6.24-rc3-mm2/include/linux/slab.h 2007-11-29 19:15:01.795726968 -0800 @@ -16,7 +16,6 @@ /* * Flags to pass to kmem_cache_create(). - * The ones marked DEBUG are only valid if CONFIG_SLAB_DEBUG is set. */ #define SLAB_DEBUG_FREE 0x00000100UL /* DEBUG: Perform (expensive) checks on free */ #define SLAB_RED_ZONE 0x00000400UL /* DEBUG: Red zone objs in a cache */ @@ -114,12 +113,10 @@ size_t ksize(const void *); * See each allocator definition file for additional comments and * implementation notes. */ -#ifdef CONFIG_SLUB -#include -#elif defined(CONFIG_SLOB) +#ifdef CONFIG_SLOB #include #else -#include +#include #endif /** @@ -218,14 +215,14 @@ static inline void *kmem_cache_alloc_nod * allocator where we care about the real place the memory allocation * request comes from. */ -#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) +#ifndef CONFIG_SLOB extern void *__kmalloc_track_caller(size_t, gfp_t, void*); #define kmalloc_track_caller(size, flags) \ __kmalloc_track_caller(size, flags, __builtin_return_address(0)) #else #define kmalloc_track_caller(size, flags) \ __kmalloc(size, flags) -#endif /* DEBUG_SLAB */ +#endif #ifdef CONFIG_NUMA /* @@ -236,14 +233,14 @@ extern void *__kmalloc_track_caller(size * standard allocator where we care about the real place the memory * allocation request comes from. */ -#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) +#ifndef CONFIG_SLOB extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, void *); #define kmalloc_node_track_caller(size, flags, node) \ __kmalloc_node_track_caller(size, flags, node, \ __builtin_return_address(0)) #else #define kmalloc_node_track_caller(size, flags, node) \ - __kmalloc_node(size, flags, node) + __kmalloc_node(size, flags, node) #endif #else /* CONFIG_NUMA */ @@ -251,7 +248,7 @@ extern void *__kmalloc_node_track_caller #define kmalloc_node_track_caller(size, flags, node) \ kmalloc_track_caller(size, flags) -#endif /* DEBUG_SLAB */ +#endif /* CONFIG_NUMA */ /* * Shortcuts Index: linux-2.6.24-rc3-mm2/init/Kconfig =================================================================== --- linux-2.6.24-rc3-mm2.orig/init/Kconfig 2007-11-28 11:12:07.795962936 -0800 +++ linux-2.6.24-rc3-mm2/init/Kconfig 2007-11-29 19:08:18.943735003 -0800 @@ -650,19 +650,11 @@ config SLUB_DEBUG no support for cache validation etc. choice - prompt "Choose SLAB allocator" + prompt "Choose slab allocator" default SLUB help This option allows to select a slab allocator. -config SLAB - bool "SLAB" - help - The regular slab allocator that is established and known to work - well in all environments. It organizes cache hot objects in - per cpu and per node queues. SLAB is the default choice for - a slab allocator. - config SLUB bool "SLUB (Unqueued Allocator)" help Index: linux-2.6.24-rc3-mm2/mm/Makefile =================================================================== --- linux-2.6.24-rc3-mm2.orig/mm/Makefile 2007-11-28 11:12:08.211962663 -0800 +++ linux-2.6.24-rc3-mm2/mm/Makefile 2007-11-29 19:09:18.744975643 -0800 @@ -24,7 +24,6 @@ obj-$(CONFIG_SHMEM) += shmem.o obj-$(CONFIG_TMPFS_POSIX_ACL) += shmem_acl.o obj-$(CONFIG_TINY_SHMEM) += tiny-shmem.o obj-$(CONFIG_SLOB) += slob.o -obj-$(CONFIG_SLAB) += slab.o obj-$(CONFIG_SLUB) += slub.o obj-$(CONFIG_MEMORY_HOTPLUG) += memory_hotplug.o obj-$(CONFIG_FS_XIP) += filemap_xip.o Index: linux-2.6.24-rc3-mm2/lib/Kconfig.debug =================================================================== --- linux-2.6.24-rc3-mm2.orig/lib/Kconfig.debug 2007-11-28 11:12:08.175962546 -0800 +++ linux-2.6.24-rc3-mm2/lib/Kconfig.debug 2007-11-29 19:08:52.032423365 -0800 @@ -158,14 +158,6 @@ config TIMER_STATS (it defaults to deactivated on bootup and will only be activated if some application like powertop activates it explicitly). -config DEBUG_SLAB - bool "Debug slab memory allocations" - depends on DEBUG_KERNEL && SLAB - help - Say Y here to have the kernel do limited verification on memory - allocation as well as poisoning memory on free to catch use of freed - memory. This can make kmalloc/kfree-intensive workloads much slower. - config DEBUG_GPIO bool "Debug GPIO calls" depends on DEBUG_KERNEL && GPIO_LIB @@ -175,15 +167,6 @@ config DEBUG_GPIO that sleeping calls aren't made from nonsleeping contexts. This can make bitbanged serial protocols slower. -config DEBUG_SLAB_LEAK - bool "Slab memory leak debugging" - depends on DEBUG_SLAB - default y - help - Enable /proc/slab_allocators - provides detailed information about - which parts of the kernel are using slab objects. May be used for - tracking memory leaks and for instrumenting memory usage. - config SLUB_DEBUG_ON bool "SLUB debugging on by default" depends on SLUB && SLUB_DEBUG Index: linux-2.6.24-rc3-mm2/fs/proc/proc_misc.c =================================================================== --- linux-2.6.24-rc3-mm2.orig/fs/proc/proc_misc.c 2007-11-28 11:11:36.095962585 -0800 +++ linux-2.6.24-rc3-mm2/fs/proc/proc_misc.c 2007-11-29 19:05:56.576676596 -0800 @@ -416,47 +416,6 @@ static const struct file_operations proc }; #endif -#ifdef CONFIG_SLAB -static int slabinfo_open(struct inode *inode, struct file *file) -{ - return seq_open(file, &slabinfo_op); -} -static const struct file_operations proc_slabinfo_operations = { - .open = slabinfo_open, - .read = seq_read, - .write = slabinfo_write, - .llseek = seq_lseek, - .release = seq_release, -}; - -#ifdef CONFIG_DEBUG_SLAB_LEAK -extern struct seq_operations slabstats_op; -static int slabstats_open(struct inode *inode, struct file *file) -{ - unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL); - int ret = -ENOMEM; - if (n) { - ret = seq_open(file, &slabstats_op); - if (!ret) { - struct seq_file *m = file->private_data; - *n = PAGE_SIZE / (2 * sizeof(unsigned long)); - m->private = n; - n = NULL; - } - kfree(n); - } - return ret; -} - -static const struct file_operations proc_slabstats_operations = { - .open = slabstats_open, - .read = seq_read, - .llseek = seq_lseek, - .release = seq_release_private, -}; -#endif -#endif - static int show_stat(struct seq_file *p, void *v) { int i; @@ -998,12 +957,6 @@ void __init proc_misc_init(void) #endif create_seq_entry("stat", 0, &proc_stat_operations); create_seq_entry("interrupts", 0, &proc_interrupts_operations); -#ifdef CONFIG_SLAB - create_seq_entry("slabinfo",S_IWUSR|S_IRUGO,&proc_slabinfo_operations); -#ifdef CONFIG_DEBUG_SLAB_LEAK - create_seq_entry("slab_allocators", 0 ,&proc_slabstats_operations); -#endif -#endif create_seq_entry("buddyinfo",S_IRUGO, &fragmentation_file_operations); create_seq_entry("pagetypeinfo", S_IRUGO, &pagetypeinfo_file_ops); create_seq_entry("vmstat",S_IRUGO, &proc_vmstat_file_operations); Index: linux-2.6.24-rc3-mm2/mm/slab.c =================================================================== --- linux-2.6.24-rc3-mm2.orig/mm/slab.c 2007-11-28 11:12:08.299962599 -0800 +++ /dev/null 1970-01-01 00:00:00.000000000 +0000 @@ -1,4481 +0,0 @@ -/* - * linux/mm/slab.c - * Written by Mark Hemment, 1996/97. - * (markhe@nextd.demon.co.uk) - * - * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli - * - * Major cleanup, different bufctl logic, per-cpu arrays - * (c) 2000 Manfred Spraul - * - * Cleanup, make the head arrays unconditional, preparation for NUMA - * (c) 2002 Manfred Spraul - * - * An implementation of the Slab Allocator as described in outline in; - * UNIX Internals: The New Frontiers by Uresh Vahalia - * Pub: Prentice Hall ISBN 0-13-101908-2 - * or with a little more detail in; - * The Slab Allocator: An Object-Caching Kernel Memory Allocator - * Jeff Bonwick (Sun Microsystems). - * Presented at: USENIX Summer 1994 Technical Conference - * - * The memory is organized in caches, one cache for each object type. - * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) - * Each cache consists out of many slabs (they are small (usually one - * page long) and always contiguous), and each slab contains multiple - * initialized objects. - * - * This means, that your constructor is used only for newly allocated - * slabs and you must pass objects with the same initializations to - * kmem_cache_free. - * - * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, - * normal). If you need a special memory type, then must create a new - * cache for that memory type. - * - * In order to reduce fragmentation, the slabs are sorted in 3 groups: - * full slabs with 0 free objects - * partial slabs - * empty slabs with no allocated objects - * - * If partial slabs exist, then new allocations come from these slabs, - * otherwise from empty slabs or new slabs are allocated. - * - * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache - * during kmem_cache_destroy(). The caller must prevent concurrent allocs. - * - * Each cache has a short per-cpu head array, most allocs - * and frees go into that array, and if that array overflows, then 1/2 - * of the entries in the array are given back into the global cache. - * The head array is strictly LIFO and should improve the cache hit rates. - * On SMP, it additionally reduces the spinlock operations. - * - * The c_cpuarray may not be read with enabled local interrupts - - * it's changed with a smp_call_function(). - * - * SMP synchronization: - * constructors and destructors are called without any locking. - * Several members in struct kmem_cache and struct slab never change, they - * are accessed without any locking. - * The per-cpu arrays are never accessed from the wrong cpu, no locking, - * and local interrupts are disabled so slab code is preempt-safe. - * The non-constant members are protected with a per-cache irq spinlock. - * - * Many thanks to Mark Hemment, who wrote another per-cpu slab patch - * in 2000 - many ideas in the current implementation are derived from - * his patch. - * - * Further notes from the original documentation: - * - * 11 April '97. Started multi-threading - markhe - * The global cache-chain is protected by the mutex 'cache_chain_mutex'. - * The sem is only needed when accessing/extending the cache-chain, which - * can never happen inside an interrupt (kmem_cache_create(), - * kmem_cache_shrink() and kmem_cache_reap()). - * - * At present, each engine can be growing a cache. This should be blocked. - * - * 15 March 2005. NUMA slab allocator. - * Shai Fultheim . - * Shobhit Dayal - * Alok N Kataria - * Christoph Lameter - * - * Modified the slab allocator to be node aware on NUMA systems. - * Each node has its own list of partial, free and full slabs. - * All object allocations for a node occur from node specific slab lists. - */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include -#include -#include - -/* - * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. - * 0 for faster, smaller code (especially in the critical paths). - * - * STATS - 1 to collect stats for /proc/slabinfo. - * 0 for faster, smaller code (especially in the critical paths). - * - * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) - */ - -#ifdef CONFIG_DEBUG_SLAB -#define DEBUG 1 -#define STATS 1 -#define FORCED_DEBUG 1 -#else -#define DEBUG 0 -#define STATS 0 -#define FORCED_DEBUG 0 -#endif - -/* Shouldn't this be in a header file somewhere? */ -#define BYTES_PER_WORD sizeof(void *) -#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) - -#ifndef cache_line_size -#define cache_line_size() L1_CACHE_BYTES -#endif - -#ifndef ARCH_KMALLOC_MINALIGN -/* - * Enforce a minimum alignment for the kmalloc caches. - * Usually, the kmalloc caches are cache_line_size() aligned, except when - * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned. - * Some archs want to perform DMA into kmalloc caches and need a guaranteed - * alignment larger than the alignment of a 64-bit integer. - * ARCH_KMALLOC_MINALIGN allows that. - * Note that increasing this value may disable some debug features. - */ -#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) -#endif - -#ifndef ARCH_SLAB_MINALIGN -/* - * Enforce a minimum alignment for all caches. - * Intended for archs that get misalignment faults even for BYTES_PER_WORD - * aligned buffers. Includes ARCH_KMALLOC_MINALIGN. - * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables - * some debug features. - */ -#define ARCH_SLAB_MINALIGN 0 -#endif - -#ifndef ARCH_KMALLOC_FLAGS -#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN -#endif - -/* Legal flag mask for kmem_cache_create(). */ -#if DEBUG -# define CREATE_MASK (SLAB_RED_ZONE | \ - SLAB_POISON | SLAB_HWCACHE_ALIGN | \ - SLAB_CACHE_DMA | \ - SLAB_STORE_USER | \ - SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \ - SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD) -#else -# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \ - SLAB_CACHE_DMA | \ - SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \ - SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD) -#endif - -/* - * kmem_bufctl_t: - * - * Bufctl's are used for linking objs within a slab - * linked offsets. - * - * This implementation relies on "struct page" for locating the cache & - * slab an object belongs to. - * This allows the bufctl structure to be small (one int), but limits - * the number of objects a slab (not a cache) can contain when off-slab - * bufctls are used. The limit is the size of the largest general cache - * that does not use off-slab slabs. - * For 32bit archs with 4 kB pages, is this 56. - * This is not serious, as it is only for large objects, when it is unwise - * to have too many per slab. - * Note: This limit can be raised by introducing a general cache whose size - * is less than 512 (PAGE_SIZE<<3), but greater than 256. - */ - -typedef unsigned int kmem_bufctl_t; -#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0) -#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1) -#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2) -#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3) - -/* - * struct slab - * - * Manages the objs in a slab. Placed either at the beginning of mem allocated - * for a slab, or allocated from an general cache. - * Slabs are chained into three list: fully used, partial, fully free slabs. - */ -struct slab { - struct list_head list; - unsigned long colouroff; - void *s_mem; /* including colour offset */ - unsigned int inuse; /* num of objs active in slab */ - kmem_bufctl_t free; - unsigned short nodeid; -}; - -/* - * struct slab_rcu - * - * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to - * arrange for kmem_freepages to be called via RCU. This is useful if - * we need to approach a kernel structure obliquely, from its address - * obtained without the usual locking. We can lock the structure to - * stabilize it and check it's still at the given address, only if we - * can be sure that the memory has not been meanwhile reused for some - * other kind of object (which our subsystem's lock might corrupt). - * - * rcu_read_lock before reading the address, then rcu_read_unlock after - * taking the spinlock within the structure expected at that address. - * - * We assume struct slab_rcu can overlay struct slab when destroying. - */ -struct slab_rcu { - struct rcu_head head; - struct kmem_cache *cachep; - void *addr; -}; - -/* - * struct array_cache - * - * Purpose: - * - LIFO ordering, to hand out cache-warm objects from _alloc - * - reduce the number of linked list operations - * - reduce spinlock operations - * - * The limit is stored in the per-cpu structure to reduce the data cache - * footprint. - * - */ -struct array_cache { - unsigned int avail; - unsigned int limit; - unsigned int batchcount; - unsigned int touched; - spinlock_t lock; - void *entry[]; /* - * Must have this definition in here for the proper - * alignment of array_cache. Also simplifies accessing - * the entries. - */ -}; - -/* - * bootstrap: The caches do not work without cpuarrays anymore, but the - * cpuarrays are allocated from the generic caches... - */ -#define BOOT_CPUCACHE_ENTRIES 1 -struct arraycache_init { - struct array_cache cache; - void *entries[BOOT_CPUCACHE_ENTRIES]; -}; - -/* - * The slab lists for all objects. - */ -struct kmem_list3 { - struct list_head slabs_partial; /* partial list first, better asm code */ - struct list_head slabs_full; - struct list_head slabs_free; - unsigned long free_objects; - unsigned int free_limit; - unsigned int colour_next; /* Per-node cache coloring */ - spinlock_t list_lock; - struct array_cache *shared; /* shared per node */ - struct array_cache **alien; /* on other nodes */ - unsigned long next_reap; /* updated without locking */ - int free_touched; /* updated without locking */ -}; - -/* - * Need this for bootstrapping a per node allocator. - */ -#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1) -struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS]; -#define CACHE_CACHE 0 -#define SIZE_AC 1 -#define SIZE_L3 (1 + MAX_NUMNODES) - -static int drain_freelist(struct kmem_cache *cache, - struct kmem_list3 *l3, int tofree); -static void free_block(struct kmem_cache *cachep, void **objpp, int len, - int node); -static int enable_cpucache(struct kmem_cache *cachep); -static void cache_reap(struct work_struct *unused); - -/* - * This function must be completely optimized away if a constant is passed to - * it. Mostly the same as what is in linux/slab.h except it returns an index. - */ -static __always_inline int index_of(const size_t size) -{ - extern void __bad_size(void); - - if (__builtin_constant_p(size)) { - int i = 0; - -#define CACHE(x) \ - if (size <=x) \ - return i; \ - else \ - i++; -#include "linux/kmalloc_sizes.h" -#undef CACHE - __bad_size(); - } else - __bad_size(); - return 0; -} - -static int slab_early_init = 1; - -#define INDEX_AC index_of(sizeof(struct arraycache_init)) -#define INDEX_L3 index_of(sizeof(struct kmem_list3)) - -static void kmem_list3_init(struct kmem_list3 *parent) -{ - INIT_LIST_HEAD(&parent->slabs_full); - INIT_LIST_HEAD(&parent->slabs_partial); - INIT_LIST_HEAD(&parent->slabs_free); - parent->shared = NULL; - parent->alien = NULL; - parent->colour_next = 0; - spin_lock_init(&parent->list_lock); - parent->free_objects = 0; - parent->free_touched = 0; -} - -#define MAKE_LIST(cachep, listp, slab, nodeid) \ - do { \ - INIT_LIST_HEAD(listp); \ - list_splice(&(cachep->nodelists[nodeid]->slab), listp); \ - } while (0) - -#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ - do { \ - MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ - MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ - MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ - } while (0) - -/* - * struct kmem_cache - * - * manages a cache. - */ - -struct kmem_cache { -/* 1) per-cpu data, touched during every alloc/free */ - struct array_cache *array[NR_CPUS]; -/* 2) Cache tunables. Protected by cache_chain_mutex */ - unsigned int batchcount; - unsigned int limit; - unsigned int shared; - - unsigned int buffer_size; - u32 reciprocal_buffer_size; -/* 3) touched by every alloc & free from the backend */ - - unsigned int flags; /* constant flags */ - unsigned int num; /* # of objs per slab */ - -/* 4) cache_grow/shrink */ - /* order of pgs per slab (2^n) */ - unsigned int gfporder; - - /* force GFP flags, e.g. GFP_DMA */ - gfp_t gfpflags; - - size_t colour; /* cache colouring range */ - unsigned int colour_off; /* colour offset */ - struct kmem_cache *slabp_cache; - unsigned int slab_size; - unsigned int dflags; /* dynamic flags */ - - /* constructor func */ - void (*ctor)(struct kmem_cache *, void *); - -/* 5) cache creation/removal */ - const char *name; - struct list_head next; - -/* 6) statistics */ -#if STATS - unsigned long num_active; - unsigned long num_allocations; - unsigned long high_mark; - unsigned long grown; - unsigned long reaped; - unsigned long errors; - unsigned long max_freeable; - unsigned long node_allocs; - unsigned long node_frees; - unsigned long node_overflow; - atomic_t allochit; - atomic_t allocmiss; - atomic_t freehit; - atomic_t freemiss; -#endif -#if DEBUG - /* - * If debugging is enabled, then the allocator can add additional - * fields and/or padding to every object. buffer_size contains the total - * object size including these internal fields, the following two - * variables contain the offset to the user object and its size. - */ - int obj_offset; - int obj_size; -#endif - /* - * We put nodelists[] at the end of kmem_cache, because we want to size - * this array to nr_node_ids slots instead of MAX_NUMNODES - * (see kmem_cache_init()) - * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache - * is statically defined, so we reserve the max number of nodes. - */ - struct kmem_list3 *nodelists[MAX_NUMNODES]; - /* - * Do not add fields after nodelists[] - */ -}; - -#define CFLGS_OFF_SLAB (0x80000000UL) -#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) - -#define BATCHREFILL_LIMIT 16 -/* - * Optimization question: fewer reaps means less probability for unnessary - * cpucache drain/refill cycles. - * - * OTOH the cpuarrays can contain lots of objects, - * which could lock up otherwise freeable slabs. - */ -#define REAPTIMEOUT_CPUC (2*HZ) -#define REAPTIMEOUT_LIST3 (4*HZ) - -#if STATS -#define STATS_INC_ACTIVE(x) ((x)->num_active++) -#define STATS_DEC_ACTIVE(x) ((x)->num_active--) -#define STATS_INC_ALLOCED(x) ((x)->num_allocations++) -#define STATS_INC_GROWN(x) ((x)->grown++) -#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y)) -#define STATS_SET_HIGH(x) \ - do { \ - if ((x)->num_active > (x)->high_mark) \ - (x)->high_mark = (x)->num_active; \ - } while (0) -#define STATS_INC_ERR(x) ((x)->errors++) -#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) -#define STATS_INC_NODEFREES(x) ((x)->node_frees++) -#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) -#define STATS_SET_FREEABLE(x, i) \ - do { \ - if ((x)->max_freeable < i) \ - (x)->max_freeable = i; \ - } while (0) -#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) -#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) -#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) -#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) -#else -#define STATS_INC_ACTIVE(x) do { } while (0) -#define STATS_DEC_ACTIVE(x) do { } while (0) -#define STATS_INC_ALLOCED(x) do { } while (0) -#define STATS_INC_GROWN(x) do { } while (0) -#define STATS_ADD_REAPED(x,y) do { } while (0) -#define STATS_SET_HIGH(x) do { } while (0) -#define STATS_INC_ERR(x) do { } while (0) -#define STATS_INC_NODEALLOCS(x) do { } while (0) -#define STATS_INC_NODEFREES(x) do { } while (0) -#define STATS_INC_ACOVERFLOW(x) do { } while (0) -#define STATS_SET_FREEABLE(x, i) do { } while (0) -#define STATS_INC_ALLOCHIT(x) do { } while (0) -#define STATS_INC_ALLOCMISS(x) do { } while (0) -#define STATS_INC_FREEHIT(x) do { } while (0) -#define STATS_INC_FREEMISS(x) do { } while (0) -#endif - -#if DEBUG - -/* - * memory layout of objects: - * 0 : objp - * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that - * the end of an object is aligned with the end of the real - * allocation. Catches writes behind the end of the allocation. - * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: - * redzone word. - * cachep->obj_offset: The real object. - * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] - * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address - * [BYTES_PER_WORD long] - */ -static int obj_offset(struct kmem_cache *cachep) -{ - return cachep->obj_offset; -} - -static int obj_size(struct kmem_cache *cachep) -{ - return cachep->obj_size; -} - -static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) -{ - BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); - return (unsigned long long*) (objp + obj_offset(cachep) - - sizeof(unsigned long long)); -} - -static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) -{ - BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); - if (cachep->flags & SLAB_STORE_USER) - return (unsigned long long *)(objp + cachep->buffer_size - - sizeof(unsigned long long) - - REDZONE_ALIGN); - return (unsigned long long *) (objp + cachep->buffer_size - - sizeof(unsigned long long)); -} - -static void **dbg_userword(struct kmem_cache *cachep, void *objp) -{ - BUG_ON(!(cachep->flags & SLAB_STORE_USER)); - return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD); -} - -#else - -#define obj_offset(x) 0 -#define obj_size(cachep) (cachep->buffer_size) -#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) -#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) -#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) - -#endif - -/* - * Do not go above this order unless 0 objects fit into the slab. - */ -#define BREAK_GFP_ORDER_HI 1 -#define BREAK_GFP_ORDER_LO 0 -static int slab_break_gfp_order = BREAK_GFP_ORDER_LO; - -/* - * Functions for storing/retrieving the cachep and or slab from the page - * allocator. These are used to find the slab an obj belongs to. With kfree(), - * these are used to find the cache which an obj belongs to. - */ -static inline void page_set_cache(struct page *page, struct kmem_cache *cache) -{ - page->lru.next = (struct list_head *)cache; -} - -static inline struct kmem_cache *page_get_cache(struct page *page) -{ - page = compound_head(page); - BUG_ON(!PageSlab(page)); - return (struct kmem_cache *)page->lru.next; -} - -static inline void page_set_slab(struct page *page, struct slab *slab) -{ - page->lru.prev = (struct list_head *)slab; -} - -static inline struct slab *page_get_slab(struct page *page) -{ - BUG_ON(!PageSlab(page)); - return (struct slab *)page->lru.prev; -} - -static inline struct kmem_cache *virt_to_cache(const void *obj) -{ - struct page *page = virt_to_head_page(obj); - return page_get_cache(page); -} - -static inline struct slab *virt_to_slab(const void *obj) -{ - struct page *page = virt_to_head_page(obj); - return page_get_slab(page); -} - -static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab, - unsigned int idx) -{ - return slab->s_mem + cache->buffer_size * idx; -} - -/* - * We want to avoid an expensive divide : (offset / cache->buffer_size) - * Using the fact that buffer_size is a constant for a particular cache, - * we can replace (offset / cache->buffer_size) by - * reciprocal_divide(offset, cache->reciprocal_buffer_size) - */ -static inline unsigned int obj_to_index(const struct kmem_cache *cache, - const struct slab *slab, void *obj) -{ - u32 offset = (obj - slab->s_mem); - return reciprocal_divide(offset, cache->reciprocal_buffer_size); -} - -/* - * These are the default caches for kmalloc. Custom caches can have other sizes. - */ -struct cache_sizes malloc_sizes[] = { -#define CACHE(x) { .cs_size = (x) }, -#include - CACHE(ULONG_MAX) -#undef CACHE -}; -EXPORT_SYMBOL(malloc_sizes); - -/* Must match cache_sizes above. Out of line to keep cache footprint low. */ -struct cache_names { - char *name; - char *name_dma; -}; - -static struct cache_names __initdata cache_names[] = { -#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" }, -#include - {NULL,} -#undef CACHE -}; - -static struct arraycache_init initarray_cache __initdata = - { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; -static struct arraycache_init initarray_generic = - { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; - -/* internal cache of cache description objs */ -static struct kmem_cache cache_cache = { - .batchcount = 1, - .limit = BOOT_CPUCACHE_ENTRIES, - .shared = 1, - .buffer_size = sizeof(struct kmem_cache), - .name = "kmem_cache", -}; - -#define BAD_ALIEN_MAGIC 0x01020304ul - -#ifdef CONFIG_LOCKDEP - -/* - * Slab sometimes uses the kmalloc slabs to store the slab headers - * for other slabs "off slab". - * The locking for this is tricky in that it nests within the locks - * of all other slabs in a few places; to deal with this special - * locking we put on-slab caches into a separate lock-class. - * - * We set lock class for alien array caches which are up during init. - * The lock annotation will be lost if all cpus of a node goes down and - * then comes back up during hotplug - */ -static struct lock_class_key on_slab_l3_key; -static struct lock_class_key on_slab_alc_key; - -static inline void init_lock_keys(void) - -{ - int q; - struct cache_sizes *s = malloc_sizes; - - while (s->cs_size != ULONG_MAX) { - for_each_node(q) { - struct array_cache **alc; - int r; - struct kmem_list3 *l3 = s->cs_cachep->nodelists[q]; - if (!l3 || OFF_SLAB(s->cs_cachep)) - continue; - lockdep_set_class(&l3->list_lock, &on_slab_l3_key); - alc = l3->alien; - /* - * FIXME: This check for BAD_ALIEN_MAGIC - * should go away when common slab code is taught to - * work even without alien caches. - * Currently, non NUMA code returns BAD_ALIEN_MAGIC - * for alloc_alien_cache, - */ - if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC) - continue; - for_each_node(r) { - if (alc[r]) - lockdep_set_class(&alc[r]->lock, - &on_slab_alc_key); - } - } - s++; - } -} -#else -static inline void init_lock_keys(void) -{ -} -#endif - -/* - * Guard access to the cache-chain. - */ -static DEFINE_MUTEX(cache_chain_mutex); -static struct list_head cache_chain; - -/* - * chicken and egg problem: delay the per-cpu array allocation - * until the general caches are up. - */ -static enum { - NONE, - PARTIAL_AC, - PARTIAL_L3, - FULL -} g_cpucache_up; - -/* - * used by boot code to determine if it can use slab based allocator - */ -int slab_is_available(void) -{ - return g_cpucache_up == FULL; -} - -static DEFINE_PER_CPU(struct delayed_work, reap_work); - -static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) -{ - return cachep->array[smp_processor_id()]; -} - -static inline struct kmem_cache *__find_general_cachep(size_t size, - gfp_t gfpflags) -{ - struct cache_sizes *csizep = malloc_sizes; - -#if DEBUG - /* This happens if someone tries to call - * kmem_cache_create(), or __kmalloc(), before - * the generic caches are initialized. - */ - BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL); -#endif - if (!size) - return ZERO_SIZE_PTR; - - while (size > csizep->cs_size) - csizep++; - - /* - * Really subtle: The last entry with cs->cs_size==ULONG_MAX - * has cs_{dma,}cachep==NULL. Thus no special case - * for large kmalloc calls required. - */ -#ifdef CONFIG_ZONE_DMA - if (unlikely(gfpflags & GFP_DMA)) - return csizep->cs_dmacachep; -#endif - return csizep->cs_cachep; -} - -static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags) -{ - return __find_general_cachep(size, gfpflags); -} - -static size_t slab_mgmt_size(size_t nr_objs, size_t align) -{ - return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align); -} - -/* - * Calculate the number of objects and left-over bytes for a given buffer size. - */ -static void cache_estimate(unsigned long gfporder, size_t buffer_size, - size_t align, int flags, size_t *left_over, - unsigned int *num) -{ - int nr_objs; - size_t mgmt_size; - size_t slab_size = PAGE_SIZE << gfporder; - - /* - * The slab management structure can be either off the slab or - * on it. For the latter case, the memory allocated for a - * slab is used for: - * - * - The struct slab - * - One kmem_bufctl_t for each object - * - Padding to respect alignment of @align - * - @buffer_size bytes for each object - * - * If the slab management structure is off the slab, then the - * alignment will already be calculated into the size. Because - * the slabs are all pages aligned, the objects will be at the - * correct alignment when allocated. - */ - if (flags & CFLGS_OFF_SLAB) { - mgmt_size = 0; - nr_objs = slab_size / buffer_size; - - if (nr_objs > SLAB_LIMIT) - nr_objs = SLAB_LIMIT; - } else { - /* - * Ignore padding for the initial guess. The padding - * is at most @align-1 bytes, and @buffer_size is at - * least @align. In the worst case, this result will - * be one greater than the number of objects that fit - * into the memory allocation when taking the padding - * into account. - */ - nr_objs = (slab_size - sizeof(struct slab)) / - (buffer_size + sizeof(kmem_bufctl_t)); - - /* - * This calculated number will be either the right - * amount, or one greater than what we want. - */ - if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size - > slab_size) - nr_objs--; - - if (nr_objs > SLAB_LIMIT) - nr_objs = SLAB_LIMIT; - - mgmt_size = slab_mgmt_size(nr_objs, align); - } - *num = nr_objs; - *left_over = slab_size - nr_objs*buffer_size - mgmt_size; -} - -#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg) - -static void __slab_error(const char *function, struct kmem_cache *cachep, - char *msg) -{ - printk(KERN_ERR "slab error in %s(): cache `%s': %s\n", - function, cachep->name, msg); - dump_stack(); -} - -/* - * By default on NUMA we use alien caches to stage the freeing of - * objects allocated from other nodes. This causes massive memory - * inefficiencies when using fake NUMA setup to split memory into a - * large number of small nodes, so it can be disabled on the command - * line - */ - -static int use_alien_caches __read_mostly = 1; -static int numa_platform __read_mostly = 1; -static int __init noaliencache_setup(char *s) -{ - use_alien_caches = 0; - return 1; -} -__setup("noaliencache", noaliencache_setup); - -#ifdef CONFIG_NUMA -/* - * Special reaping functions for NUMA systems called from cache_reap(). - * These take care of doing round robin flushing of alien caches (containing - * objects freed on different nodes from which they were allocated) and the - * flushing of remote pcps by calling drain_node_pages. - */ -static DEFINE_PER_CPU(unsigned long, reap_node); - -static void init_reap_node(int cpu) -{ - int node; - - node = next_node(cpu_to_node(cpu), node_online_map); - if (node == MAX_NUMNODES) - node = first_node(node_online_map); - - per_cpu(reap_node, cpu) = node; -} - -static void next_reap_node(void) -{ - int node = __get_cpu_var(reap_node); - - node = next_node(node, node_online_map); - if (unlikely(node >= MAX_NUMNODES)) - node = first_node(node_online_map); - __get_cpu_var(reap_node) = node; -} - -#else -#define init_reap_node(cpu) do { } while (0) -#define next_reap_node(void) do { } while (0) -#endif - -/* - * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz - * via the workqueue/eventd. - * Add the CPU number into the expiration time to minimize the possibility of - * the CPUs getting into lockstep and contending for the global cache chain - * lock. - */ -static void __cpuinit start_cpu_timer(int cpu) -{ - struct delayed_work *reap_work = &per_cpu(reap_work, cpu); - - /* - * When this gets called from do_initcalls via cpucache_init(), - * init_workqueues() has already run, so keventd will be setup - * at that time. - */ - if (keventd_up() && reap_work->work.func == NULL) { - init_reap_node(cpu); - INIT_DELAYED_WORK(reap_work, cache_reap); - schedule_delayed_work_on(cpu, reap_work, - __round_jiffies_relative(HZ, cpu)); - } -} - -static struct array_cache *alloc_arraycache(int node, int entries, - int batchcount) -{ - int memsize = sizeof(void *) * entries + sizeof(struct array_cache); - struct array_cache *nc = NULL; - - nc = kmalloc_node(memsize, GFP_KERNEL, node); - if (nc) { - nc->avail = 0; - nc->limit = entries; - nc->batchcount = batchcount; - nc->touched = 0; - spin_lock_init(&nc->lock); - } - return nc; -} - -/* - * Transfer objects in one arraycache to another. - * Locking must be handled by the caller. - * - * Return the number of entries transferred. - */ -static int transfer_objects(struct array_cache *to, - struct array_cache *from, unsigned int max) -{ - /* Figure out how many entries to transfer */ - int nr = min(min(from->avail, max), to->limit - to->avail); - - if (!nr) - return 0; - - memcpy(to->entry + to->avail, from->entry + from->avail -nr, - sizeof(void *) *nr); - - from->avail -= nr; - to->avail += nr; - to->touched = 1; - return nr; -} - -#ifndef CONFIG_NUMA - -#define drain_alien_cache(cachep, alien) do { } while (0) -#define reap_alien(cachep, l3) do { } while (0) - -static inline struct array_cache **alloc_alien_cache(int node, int limit) -{ - return (struct array_cache **)BAD_ALIEN_MAGIC; -} - -static inline void free_alien_cache(struct array_cache **ac_ptr) -{ -} - -static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) -{ - return 0; -} - -static inline void *alternate_node_alloc(struct kmem_cache *cachep, - gfp_t flags) -{ - return NULL; -} - -static inline void *____cache_alloc_node(struct kmem_cache *cachep, - gfp_t flags, int nodeid) -{ - return NULL; -} - -#else /* CONFIG_NUMA */ - -static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); -static void *alternate_node_alloc(struct kmem_cache *, gfp_t); - -static struct array_cache **alloc_alien_cache(int node, int limit) -{ - struct array_cache **ac_ptr; - int memsize = sizeof(void *) * nr_node_ids; - int i; - - if (limit > 1) - limit = 12; - ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node); - if (ac_ptr) { - for_each_node(i) { - if (i == node || !node_online(i)) { - ac_ptr[i] = NULL; - continue; - } - ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d); - if (!ac_ptr[i]) { - for (i--; i >= 0; i--) - kfree(ac_ptr[i]); - kfree(ac_ptr); - return NULL; - } - } - } - return ac_ptr; -} - -static void free_alien_cache(struct array_cache **ac_ptr) -{ - int i; - - if (!ac_ptr) - return; - for_each_node(i) - kfree(ac_ptr[i]); - kfree(ac_ptr); -} - -static void __drain_alien_cache(struct kmem_cache *cachep, - struct array_cache *ac, int node) -{ - struct kmem_list3 *rl3 = cachep->nodelists[node]; - - if (ac->avail) { - spin_lock(&rl3->list_lock); - /* - * Stuff objects into the remote nodes shared array first. - * That way we could avoid the overhead of putting the objects - * into the free lists and getting them back later. - */ - if (rl3->shared) - transfer_objects(rl3->shared, ac, ac->limit); - - free_block(cachep, ac->entry, ac->avail, node); - ac->avail = 0; - spin_unlock(&rl3->list_lock); - } -} - -/* - * Called from cache_reap() to regularly drain alien caches round robin. - */ -static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3) -{ - int node = __get_cpu_var(reap_node); - - if (l3->alien) { - struct array_cache *ac = l3->alien[node]; - - if (ac && ac->avail && spin_trylock_irq(&ac->lock)) { - __drain_alien_cache(cachep, ac, node); - spin_unlock_irq(&ac->lock); - } - } -} - -static void drain_alien_cache(struct kmem_cache *cachep, - struct array_cache **alien) -{ - int i = 0; - struct array_cache *ac; - unsigned long flags; - - for_each_online_node(i) { - ac = alien[i]; - if (ac) { - spin_lock_irqsave(&ac->lock, flags); - __drain_alien_cache(cachep, ac, i); - spin_unlock_irqrestore(&ac->lock, flags); - } - } -} - -static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) -{ - struct slab *slabp = virt_to_slab(objp); - int nodeid = slabp->nodeid; - struct kmem_list3 *l3; - struct array_cache *alien = NULL; - int node; - - node = numa_node_id(); - - /* - * Make sure we are not freeing a object from another node to the array - * cache on this cpu. - */ - if (likely(slabp->nodeid == node)) - return 0; - - l3 = cachep->nodelists[node]; - STATS_INC_NODEFREES(cachep); - if (l3->alien && l3->alien[nodeid]) { - alien = l3->alien[nodeid]; - spin_lock(&alien->lock); - if (unlikely(alien->avail == alien->limit)) { - STATS_INC_ACOVERFLOW(cachep); - __drain_alien_cache(cachep, alien, nodeid); - } - alien->entry[alien->avail++] = objp; - spin_unlock(&alien->lock); - } else { - spin_lock(&(cachep->nodelists[nodeid])->list_lock); - free_block(cachep, &objp, 1, nodeid); - spin_unlock(&(cachep->nodelists[nodeid])->list_lock); - } - return 1; -} -#endif - -static void __cpuinit cpuup_canceled(long cpu) -{ - struct kmem_cache *cachep; - struct kmem_list3 *l3 = NULL; - int node = cpu_to_node(cpu); - - list_for_each_entry(cachep, &cache_chain, next) { - struct array_cache *nc; - struct array_cache *shared; - struct array_cache **alien; - cpumask_t mask; - - mask = node_to_cpumask(node); - /* cpu is dead; no one can alloc from it. */ - nc = cachep->array[cpu]; - cachep->array[cpu] = NULL; - l3 = cachep->nodelists[node]; - - if (!l3) - goto free_array_cache; - - spin_lock_irq(&l3->list_lock); - - /* Free limit for this kmem_list3 */ - l3->free_limit -= cachep->batchcount; - if (nc) - free_block(cachep, nc->entry, nc->avail, node); - - if (!cpus_empty(mask)) { - spin_unlock_irq(&l3->list_lock); - goto free_array_cache; - } - - shared = l3->shared; - if (shared) { - free_block(cachep, shared->entry, - shared->avail, node); - l3->shared = NULL; - } - - alien = l3->alien; - l3->alien = NULL; - - spin_unlock_irq(&l3->list_lock); - - kfree(shared); - if (alien) { - drain_alien_cache(cachep, alien); - free_alien_cache(alien); - } -free_array_cache: - kfree(nc); - } - /* - * In the previous loop, all the objects were freed to - * the respective cache's slabs, now we can go ahead and - * shrink each nodelist to its limit. - */ - list_for_each_entry(cachep, &cache_chain, next) { - l3 = cachep->nodelists[node]; - if (!l3) - continue; - drain_freelist(cachep, l3, l3->free_objects); - } -} - -static int __cpuinit cpuup_prepare(long cpu) -{ - struct kmem_cache *cachep; - struct kmem_list3 *l3 = NULL; - int node = cpu_to_node(cpu); - const int memsize = sizeof(struct kmem_list3); - - /* - * We need to do this right in the beginning since - * alloc_arraycache's are going to use this list. - * kmalloc_node allows us to add the slab to the right - * kmem_list3 and not this cpu's kmem_list3 - */ - - list_for_each_entry(cachep, &cache_chain, next) { - /* - * Set up the size64 kmemlist for cpu before we can - * begin anything. Make sure some other cpu on this - * node has not already allocated this - */ - if (!cachep->nodelists[node]) { - l3 = kmalloc_node(memsize, GFP_KERNEL, node); - if (!l3) - goto bad; - kmem_list3_init(l3); - l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + - ((unsigned long)cachep) % REAPTIMEOUT_LIST3; - - /* - * The l3s don't come and go as CPUs come and - * go. cache_chain_mutex is sufficient - * protection here. - */ - cachep->nodelists[node] = l3; - } - - spin_lock_irq(&cachep->nodelists[node]->list_lock); - cachep->nodelists[node]->free_limit = - (1 + nr_cpus_node(node)) * - cachep->batchcount + cachep->num; - spin_unlock_irq(&cachep->nodelists[node]->list_lock); - } - - /* - * Now we can go ahead with allocating the shared arrays and - * array caches - */ - list_for_each_entry(cachep, &cache_chain, next) { - struct array_cache *nc; - struct array_cache *shared = NULL; - struct array_cache **alien = NULL; - - nc = alloc_arraycache(node, cachep->limit, - cachep->batchcount); - if (!nc) - goto bad; - if (cachep->shared) { - shared = alloc_arraycache(node, - cachep->shared * cachep->batchcount, - 0xbaadf00d); - if (!shared) { - kfree(nc); - goto bad; - } - } - if (use_alien_caches) { - alien = alloc_alien_cache(node, cachep->limit); - if (!alien) { - kfree(shared); - kfree(nc); - goto bad; - } - } - cachep->array[cpu] = nc; - l3 = cachep->nodelists[node]; - BUG_ON(!l3); - - spin_lock_irq(&l3->list_lock); - if (!l3->shared) { - /* - * We are serialised from CPU_DEAD or - * CPU_UP_CANCELLED by the cpucontrol lock - */ - l3->shared = shared; - shared = NULL; - } -#ifdef CONFIG_NUMA - if (!l3->alien) { - l3->alien = alien; - alien = NULL; - } -#endif - spin_unlock_irq(&l3->list_lock); - kfree(shared); - free_alien_cache(alien); - } - return 0; -bad: - cpuup_canceled(cpu); - return -ENOMEM; -} - -static int __cpuinit cpuup_callback(struct notifier_block *nfb, - unsigned long action, void *hcpu) -{ - long cpu = (long)hcpu; - int err = 0; - - switch (action) { - case CPU_UP_PREPARE: - case CPU_UP_PREPARE_FROZEN: - mutex_lock(&cache_chain_mutex); - err = cpuup_prepare(cpu); - mutex_unlock(&cache_chain_mutex); - break; - case CPU_ONLINE: - case CPU_ONLINE_FROZEN: - start_cpu_timer(cpu); - break; -#ifdef CONFIG_HOTPLUG_CPU - case CPU_DOWN_PREPARE: - case CPU_DOWN_PREPARE_FROZEN: - /* - * Shutdown cache reaper. Note that the cache_chain_mutex is - * held so that if cache_reap() is invoked it cannot do - * anything expensive but will only modify reap_work - * and reschedule the timer. - */ - cancel_rearming_delayed_work(&per_cpu(reap_work, cpu)); - /* Now the cache_reaper is guaranteed to be not running. */ - per_cpu(reap_work, cpu).work.func = NULL; - break; - case CPU_DOWN_FAILED: - case CPU_DOWN_FAILED_FROZEN: - start_cpu_timer(cpu); - break; - case CPU_DEAD: - case CPU_DEAD_FROZEN: - /* - * Even if all the cpus of a node are down, we don't free the - * kmem_list3 of any cache. This to avoid a race between - * cpu_down, and a kmalloc allocation from another cpu for - * memory from the node of the cpu going down. The list3 - * structure is usually allocated from kmem_cache_create() and - * gets destroyed at kmem_cache_destroy(). - */ - /* fall through */ -#endif - case CPU_UP_CANCELED: - case CPU_UP_CANCELED_FROZEN: - mutex_lock(&cache_chain_mutex); - cpuup_canceled(cpu); - mutex_unlock(&cache_chain_mutex); - break; - } - return err ? NOTIFY_BAD : NOTIFY_OK; -} - -static struct notifier_block __cpuinitdata cpucache_notifier = { - &cpuup_callback, NULL, 0 -}; - -/* - * swap the static kmem_list3 with kmalloced memory - */ -static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list, - int nodeid) -{ - struct kmem_list3 *ptr; - - ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid); - BUG_ON(!ptr); - - local_irq_disable(); - memcpy(ptr, list, sizeof(struct kmem_list3)); - /* - * Do not assume that spinlocks can be initialized via memcpy: - */ - spin_lock_init(&ptr->list_lock); - - MAKE_ALL_LISTS(cachep, ptr, nodeid); - cachep->nodelists[nodeid] = ptr; - local_irq_enable(); -} - -/* - * Initialisation. Called after the page allocator have been initialised and - * before smp_init(). - */ -void __init kmem_cache_init(void) -{ - size_t left_over; - struct cache_sizes *sizes; - struct cache_names *names; - int i; - int order; - int node; - - if (num_possible_nodes() == 1) { - use_alien_caches = 0; - numa_platform = 0; - } - - for (i = 0; i < NUM_INIT_LISTS; i++) { - kmem_list3_init(&initkmem_list3[i]); - if (i < MAX_NUMNODES) - cache_cache.nodelists[i] = NULL; - } - - /* - * Fragmentation resistance on low memory - only use bigger - * page orders on machines with more than 32MB of memory. - */ - if (num_physpages > (32 << 20) >> PAGE_SHIFT) - slab_break_gfp_order = BREAK_GFP_ORDER_HI; - - /* Bootstrap is tricky, because several objects are allocated - * from caches that do not exist yet: - * 1) initialize the cache_cache cache: it contains the struct - * kmem_cache structures of all caches, except cache_cache itself: - * cache_cache is statically allocated. - * Initially an __init data area is used for the head array and the - * kmem_list3 structures, it's replaced with a kmalloc allocated - * array at the end of the bootstrap. - * 2) Create the first kmalloc cache. - * The struct kmem_cache for the new cache is allocated normally. - * An __init data area is used for the head array. - * 3) Create the remaining kmalloc caches, with minimally sized - * head arrays. - * 4) Replace the __init data head arrays for cache_cache and the first - * kmalloc cache with kmalloc allocated arrays. - * 5) Replace the __init data for kmem_list3 for cache_cache and - * the other cache's with kmalloc allocated memory. - * 6) Resize the head arrays of the kmalloc caches to their final sizes. - */ - - node = numa_node_id(); - - /* 1) create the cache_cache */ - INIT_LIST_HEAD(&cache_chain); - list_add(&cache_cache.next, &cache_chain); - cache_cache.colour_off = cache_line_size(); - cache_cache.array[smp_processor_id()] = &initarray_cache.cache; - cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE]; - - /* - * struct kmem_cache size depends on nr_node_ids, which - * can be less than MAX_NUMNODES. - */ - cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) + - nr_node_ids * sizeof(struct kmem_list3 *); -#if DEBUG - cache_cache.obj_size = cache_cache.buffer_size; -#endif - cache_cache.buffer_size = ALIGN(cache_cache.buffer_size, - cache_line_size()); - cache_cache.reciprocal_buffer_size = - reciprocal_value(cache_cache.buffer_size); - - for (order = 0; order < MAX_ORDER; order++) { - cache_estimate(order, cache_cache.buffer_size, - cache_line_size(), 0, &left_over, &cache_cache.num); - if (cache_cache.num) - break; - } - BUG_ON(!cache_cache.num); - cache_cache.gfporder = order; - cache_cache.colour = left_over / cache_cache.colour_off; - cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) + - sizeof(struct slab), cache_line_size()); - - /* 2+3) create the kmalloc caches */ - sizes = malloc_sizes; - names = cache_names; - - /* - * Initialize the caches that provide memory for the array cache and the - * kmem_list3 structures first. Without this, further allocations will - * bug. - */ - - sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name, - sizes[INDEX_AC].cs_size, - ARCH_KMALLOC_MINALIGN, - ARCH_KMALLOC_FLAGS|SLAB_PANIC, - NULL); - - if (INDEX_AC != INDEX_L3) { - sizes[INDEX_L3].cs_cachep = - kmem_cache_create(names[INDEX_L3].name, - sizes[INDEX_L3].cs_size, - ARCH_KMALLOC_MINALIGN, - ARCH_KMALLOC_FLAGS|SLAB_PANIC, - NULL); - } - - slab_early_init = 0; - - while (sizes->cs_size != ULONG_MAX) { - /* - * For performance, all the general caches are L1 aligned. - * This should be particularly beneficial on SMP boxes, as it - * eliminates "false sharing". - * Note for systems short on memory removing the alignment will - * allow tighter packing of the smaller caches. - */ - if (!sizes->cs_cachep) { - sizes->cs_cachep = kmem_cache_create(names->name, - sizes->cs_size, - ARCH_KMALLOC_MINALIGN, - ARCH_KMALLOC_FLAGS|SLAB_PANIC, - NULL); - } -#ifdef CONFIG_ZONE_DMA - sizes->cs_dmacachep = kmem_cache_create( - names->name_dma, - sizes->cs_size, - ARCH_KMALLOC_MINALIGN, - ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA| - SLAB_PANIC, - NULL); -#endif - sizes++; - names++; - } - /* 4) Replace the bootstrap head arrays */ - { - struct array_cache *ptr; - - ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); - - local_irq_disable(); - BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache); - memcpy(ptr, cpu_cache_get(&cache_cache), - sizeof(struct arraycache_init)); - /* - * Do not assume that spinlocks can be initialized via memcpy: - */ - spin_lock_init(&ptr->lock); - - cache_cache.array[smp_processor_id()] = ptr; - local_irq_enable(); - - ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); - - local_irq_disable(); - BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep) - != &initarray_generic.cache); - memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep), - sizeof(struct arraycache_init)); - /* - * Do not assume that spinlocks can be initialized via memcpy: - */ - spin_lock_init(&ptr->lock); - - malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] = - ptr; - local_irq_enable(); - } - /* 5) Replace the bootstrap kmem_list3's */ - { - int nid; - - /* Replace the static kmem_list3 structures for the boot cpu */ - init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node); - - for_each_node_state(nid, N_NORMAL_MEMORY) { - init_list(malloc_sizes[INDEX_AC].cs_cachep, - &initkmem_list3[SIZE_AC + nid], nid); - - if (INDEX_AC != INDEX_L3) { - init_list(malloc_sizes[INDEX_L3].cs_cachep, - &initkmem_list3[SIZE_L3 + nid], nid); - } - } - } - - /* 6) resize the head arrays to their final sizes */ - { - struct kmem_cache *cachep; - mutex_lock(&cache_chain_mutex); - list_for_each_entry(cachep, &cache_chain, next) - if (enable_cpucache(cachep)) - BUG(); - mutex_unlock(&cache_chain_mutex); - } - - /* Annotate slab for lockdep -- annotate the malloc caches */ - init_lock_keys(); - - - /* Done! */ - g_cpucache_up = FULL; - - /* - * Register a cpu startup notifier callback that initializes - * cpu_cache_get for all new cpus - */ - register_cpu_notifier(&cpucache_notifier); - - /* - * The reap timers are started later, with a module init call: That part - * of the kernel is not yet operational. - */ -} - -static int __init cpucache_init(void) -{ - int cpu; - - /* - * Register the timers that return unneeded pages to the page allocator - */ - for_each_online_cpu(cpu) - start_cpu_timer(cpu); - return 0; -} -__initcall(cpucache_init); - -/* - * Interface to system's page allocator. No need to hold the cache-lock. - * - * If we requested dmaable memory, we will get it. Even if we - * did not request dmaable memory, we might get it, but that - * would be relatively rare and ignorable. - */ -static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid) -{ - struct page *page; - int nr_pages; - int i; - -#ifndef CONFIG_MMU - /* - * Nommu uses slab's for process anonymous memory allocations, and thus - * requires __GFP_COMP to properly refcount higher order allocations - */ - flags |= __GFP_COMP; -#endif - - flags |= cachep->gfpflags; - if (cachep->flags & SLAB_RECLAIM_ACCOUNT) - flags |= __GFP_RECLAIMABLE; - - page = alloc_pages_node(nodeid, flags, cachep->gfporder); - if (!page) - return NULL; - - nr_pages = (1 << cachep->gfporder); - if (cachep->flags & SLAB_RECLAIM_ACCOUNT) - add_zone_page_state(page_zone(page), - NR_SLAB_RECLAIMABLE, nr_pages); - else - add_zone_page_state(page_zone(page), - NR_SLAB_UNRECLAIMABLE, nr_pages); - for (i = 0; i < nr_pages; i++) - __SetPageSlab(page + i); - return page_address(page); -} - -/* - * Interface to system's page release. - */ -static void kmem_freepages(struct kmem_cache *cachep, void *addr) -{ - unsigned long i = (1 << cachep->gfporder); - struct page *page = virt_to_page(addr); - const unsigned long nr_freed = i; - - if (cachep->flags & SLAB_RECLAIM_ACCOUNT) - sub_zone_page_state(page_zone(page), - NR_SLAB_RECLAIMABLE, nr_freed); - else - sub_zone_page_state(page_zone(page), - NR_SLAB_UNRECLAIMABLE, nr_freed); - while (i--) { - BUG_ON(!PageSlab(page)); - __ClearPageSlab(page); - page++; - } - if (current->reclaim_state) - current->reclaim_state->reclaimed_slab += nr_freed; - free_pages((unsigned long)addr, cachep->gfporder); -} - -static void kmem_rcu_free(struct rcu_head *head) -{ - struct slab_rcu *slab_rcu = (struct slab_rcu *)head; - struct kmem_cache *cachep = slab_rcu->cachep; - - kmem_freepages(cachep, slab_rcu->addr); - if (OFF_SLAB(cachep)) - kmem_cache_free(cachep->slabp_cache, slab_rcu); -} - -#if DEBUG - -#ifdef CONFIG_DEBUG_PAGEALLOC -static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr, - unsigned long caller) -{ - int size = obj_size(cachep); - - addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)]; - - if (size < 5 * sizeof(unsigned long)) - return; - - *addr++ = 0x12345678; - *addr++ = caller; - *addr++ = smp_processor_id(); - size -= 3 * sizeof(unsigned long); - { - unsigned long *sptr = &caller; - unsigned long svalue; - - while (!kstack_end(sptr)) { - svalue = *sptr++; - if (kernel_text_address(svalue)) { - *addr++ = svalue; - size -= sizeof(unsigned long); - if (size <= sizeof(unsigned long)) - break; - } - } - - } - *addr++ = 0x87654321; -} -#endif - -static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) -{ - int size = obj_size(cachep); - addr = &((char *)addr)[obj_offset(cachep)]; - - memset(addr, val, size); - *(unsigned char *)(addr + size - 1) = POISON_END; -} - -static void dump_line(char *data, int offset, int limit) -{ - int i; - unsigned char error = 0; - int bad_count = 0; - - printk(KERN_ERR "%03x:", offset); - for (i = 0; i < limit; i++) { - if (data[offset + i] != POISON_FREE) { - error = data[offset + i]; - bad_count++; - } - printk(" %02x", (unsigned char)data[offset + i]); - } - printk("\n"); - - if (bad_count == 1) { - error ^= POISON_FREE; - if (!(error & (error - 1))) { - printk(KERN_ERR "Single bit error detected. Probably " - "bad RAM.\n"); -#ifdef CONFIG_X86 - printk(KERN_ERR "Run memtest86+ or a similar memory " - "test tool.\n"); -#else - printk(KERN_ERR "Run a memory test tool.\n"); -#endif - } - } -} -#endif - -#if DEBUG - -static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) -{ - int i, size; - char *realobj; - - if (cachep->flags & SLAB_RED_ZONE) { - printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n", - *dbg_redzone1(cachep, objp), - *dbg_redzone2(cachep, objp)); - } - - if (cachep->flags & SLAB_STORE_USER) { - printk(KERN_ERR "Last user: [<%p>]", - *dbg_userword(cachep, objp)); - print_symbol("(%s)", - (unsigned long)*dbg_userword(cachep, objp)); - printk("\n"); - } - realobj = (char *)objp + obj_offset(cachep); - size = obj_size(cachep); - for (i = 0; i < size && lines; i += 16, lines--) { - int limit; - limit = 16; - if (i + limit > size) - limit = size - i; - dump_line(realobj, i, limit); - } -} - -static void check_poison_obj(struct kmem_cache *cachep, void *objp) -{ - char *realobj; - int size, i; - int lines = 0; - - realobj = (char *)objp + obj_offset(cachep); - size = obj_size(cachep); - - for (i = 0; i < size; i++) { - char exp = POISON_FREE; - if (i == size - 1) - exp = POISON_END; - if (realobj[i] != exp) { - int limit; - /* Mismatch ! */ - /* Print header */ - if (lines == 0) { - printk(KERN_ERR - "Slab corruption: %s start=%p, len=%d\n", - cachep->name, realobj, size); - print_objinfo(cachep, objp, 0); - } - /* Hexdump the affected line */ - i = (i / 16) * 16; - limit = 16; - if (i + limit > size) - limit = size - i; - dump_line(realobj, i, limit); - i += 16; - lines++; - /* Limit to 5 lines */ - if (lines > 5) - break; - } - } - if (lines != 0) { - /* Print some data about the neighboring objects, if they - * exist: - */ - struct slab *slabp = virt_to_slab(objp); - unsigned int objnr; - - objnr = obj_to_index(cachep, slabp, objp); - if (objnr) { - objp = index_to_obj(cachep, slabp, objnr - 1); - realobj = (char *)objp + obj_offset(cachep); - printk(KERN_ERR "Prev obj: start=%p, len=%d\n", - realobj, size); - print_objinfo(cachep, objp, 2); - } - if (objnr + 1 < cachep->num) { - objp = index_to_obj(cachep, slabp, objnr + 1); - realobj = (char *)objp + obj_offset(cachep); - printk(KERN_ERR "Next obj: start=%p, len=%d\n", - realobj, size); - print_objinfo(cachep, objp, 2); - } - } -} -#endif - -#if DEBUG -/** - * slab_destroy_objs - destroy a slab and its objects - * @cachep: cache pointer being destroyed - * @slabp: slab pointer being destroyed - * - * Call the registered destructor for each object in a slab that is being - * destroyed. - */ -static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp) -{ - int i; - for (i = 0; i < cachep->num; i++) { - void *objp = index_to_obj(cachep, slabp, i); - - if (cachep->flags & SLAB_POISON) { -#ifdef CONFIG_DEBUG_PAGEALLOC - if (cachep->buffer_size % PAGE_SIZE == 0 && - OFF_SLAB(cachep)) - kernel_map_pages(virt_to_page(objp), - cachep->buffer_size / PAGE_SIZE, 1); - else - check_poison_obj(cachep, objp); -#else - check_poison_obj(cachep, objp); -#endif - } - if (cachep->flags & SLAB_RED_ZONE) { - if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) - slab_error(cachep, "start of a freed object " - "was overwritten"); - if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) - slab_error(cachep, "end of a freed object " - "was overwritten"); - } - } -} -#else -static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp) -{ -} -#endif - -/** - * slab_destroy - destroy and release all objects in a slab - * @cachep: cache pointer being destroyed - * @slabp: slab pointer being destroyed - * - * Destroy all the objs in a slab, and release the mem back to the system. - * Before calling the slab must have been unlinked from the cache. The - * cache-lock is not held/needed. - */ -static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp) -{ - void *addr = slabp->s_mem - slabp->colouroff; - - slab_destroy_objs(cachep, slabp); - if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) { - struct slab_rcu *slab_rcu; - - slab_rcu = (struct slab_rcu *)slabp; - slab_rcu->cachep = cachep; - slab_rcu->addr = addr; - call_rcu(&slab_rcu->head, kmem_rcu_free); - } else { - kmem_freepages(cachep, addr); - if (OFF_SLAB(cachep)) - kmem_cache_free(cachep->slabp_cache, slabp); - } -} - -/* - * For setting up all the kmem_list3s for cache whose buffer_size is same as - * size of kmem_list3. - */ -static void __init set_up_list3s(struct kmem_cache *cachep, int index) -{ - int node; - - for_each_node_state(node, N_NORMAL_MEMORY) { - cachep->nodelists[node] = &initkmem_list3[index + node]; - cachep->nodelists[node]->next_reap = jiffies + - REAPTIMEOUT_LIST3 + - ((unsigned long)cachep) % REAPTIMEOUT_LIST3; - } -} - -static void __kmem_cache_destroy(struct kmem_cache *cachep) -{ - int i; - struct kmem_list3 *l3; - - for_each_online_cpu(i) - kfree(cachep->array[i]); - - /* NUMA: free the list3 structures */ - for_each_online_node(i) { - l3 = cachep->nodelists[i]; - if (l3) { - kfree(l3->shared); - free_alien_cache(l3->alien); - kfree(l3); - } - } - kmem_cache_free(&cache_cache, cachep); -} - - -/** - * calculate_slab_order - calculate size (page order) of slabs - * @cachep: pointer to the cache that is being created - * @size: size of objects to be created in this cache. - * @align: required alignment for the objects. - * @flags: slab allocation flags - * - * Also calculates the number of objects per slab. - * - * This could be made much more intelligent. For now, try to avoid using - * high order pages for slabs. When the gfp() functions are more friendly - * towards high-order requests, this should be changed. - */ -static size_t calculate_slab_order(struct kmem_cache *cachep, - size_t size, size_t align, unsigned long flags) -{ - unsigned long offslab_limit; - size_t left_over = 0; - int gfporder; - - for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { - unsigned int num; - size_t remainder; - - cache_estimate(gfporder, size, align, flags, &remainder, &num); - if (!num) - continue; - - if (flags & CFLGS_OFF_SLAB) { - /* - * Max number of objs-per-slab for caches which - * use off-slab slabs. Needed to avoid a possible - * looping condition in cache_grow(). - */ - offslab_limit = size - sizeof(struct slab); - offslab_limit /= sizeof(kmem_bufctl_t); - - if (num > offslab_limit) - break; - } - - /* Found something acceptable - save it away */ - cachep->num = num; - cachep->gfporder = gfporder; - left_over = remainder; - - /* - * A VFS-reclaimable slab tends to have most allocations - * as GFP_NOFS and we really don't want to have to be allocating - * higher-order pages when we are unable to shrink dcache. - */ - if (flags & SLAB_RECLAIM_ACCOUNT) - break; - - /* - * Large number of objects is good, but very large slabs are - * currently bad for the gfp()s. - */ - if (gfporder >= slab_break_gfp_order) - break; - - /* - * Acceptable internal fragmentation? - */ - if (left_over * 8 <= (PAGE_SIZE << gfporder)) - break; - } - return left_over; -} - -static int __init_refok setup_cpu_cache(struct kmem_cache *cachep) -{ - if (g_cpucache_up == FULL) - return enable_cpucache(cachep); - - if (g_cpucache_up == NONE) { - /* - * Note: the first kmem_cache_create must create the cache - * that's used by kmalloc(24), otherwise the creation of - * further caches will BUG(). - */ - cachep->array[smp_processor_id()] = &initarray_generic.cache; - - /* - * If the cache that's used by kmalloc(sizeof(kmem_list3)) is - * the first cache, then we need to set up all its list3s, - * otherwise the creation of further caches will BUG(). - */ - set_up_list3s(cachep, SIZE_AC); - if (INDEX_AC == INDEX_L3) - g_cpucache_up = PARTIAL_L3; - else - g_cpucache_up = PARTIAL_AC; - } else { - cachep->array[smp_processor_id()] = - kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); - - if (g_cpucache_up == PARTIAL_AC) { - set_up_list3s(cachep, SIZE_L3); - g_cpucache_up = PARTIAL_L3; - } else { - int node; - for_each_node_state(node, N_NORMAL_MEMORY) { - cachep->nodelists[node] = - kmalloc_node(sizeof(struct kmem_list3), - GFP_KERNEL, node); - BUG_ON(!cachep->nodelists[node]); - kmem_list3_init(cachep->nodelists[node]); - } - } - } - cachep->nodelists[numa_node_id()]->next_reap = - jiffies + REAPTIMEOUT_LIST3 + - ((unsigned long)cachep) % REAPTIMEOUT_LIST3; - - cpu_cache_get(cachep)->avail = 0; - cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; - cpu_cache_get(cachep)->batchcount = 1; - cpu_cache_get(cachep)->touched = 0; - cachep->batchcount = 1; - cachep->limit = BOOT_CPUCACHE_ENTRIES; - return 0; -} - -/** - * kmem_cache_create - Create a cache. - * @name: A string which is used in /proc/slabinfo to identify this cache. - * @size: The size of objects to be created in this cache. - * @align: The required alignment for the objects. - * @flags: SLAB flags - * @ctor: A constructor for the objects. - * - * Returns a ptr to the cache on success, NULL on failure. - * Cannot be called within a int, but can be interrupted. - * The @ctor is run when new pages are allocated by the cache. - * - * @name must be valid until the cache is destroyed. This implies that - * the module calling this has to destroy the cache before getting unloaded. - * - * The flags are - * - * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) - * to catch references to uninitialised memory. - * - * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check - * for buffer overruns. - * - * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware - * cacheline. This can be beneficial if you're counting cycles as closely - * as davem. - */ -struct kmem_cache * -kmem_cache_create (const char *name, size_t size, size_t align, - unsigned long flags, - void (*ctor)(struct kmem_cache *, void *)) -{ - size_t left_over, slab_size, ralign; - struct kmem_cache *cachep = NULL, *pc; - - /* - * Sanity checks... these are all serious usage bugs. - */ - if (!name || in_interrupt() || (size < BYTES_PER_WORD) || - size > KMALLOC_MAX_SIZE) { - printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__, - name); - BUG(); - } - - /* - * We use cache_chain_mutex to ensure a consistent view of - * cpu_online_map as well. Please see cpuup_callback - */ - get_online_cpus(); - mutex_lock(&cache_chain_mutex); - - list_for_each_entry(pc, &cache_chain, next) { - char tmp; - int res; - - /* - * This happens when the module gets unloaded and doesn't - * destroy its slab cache and no-one else reuses the vmalloc - * area of the module. Print a warning. - */ - res = probe_kernel_address(pc->name, tmp); - if (res) { - printk(KERN_ERR - "SLAB: cache with size %d has lost its name\n", - pc->buffer_size); - continue; - } - - if (!strcmp(pc->name, name)) { - printk(KERN_ERR - "kmem_cache_create: duplicate cache %s\n", name); - dump_stack(); - goto oops; - } - } - -#if DEBUG - WARN_ON(strchr(name, ' ')); /* It confuses parsers */ -#if FORCED_DEBUG - /* - * Enable redzoning and last user accounting, except for caches with - * large objects, if the increased size would increase the object size - * above the next power of two: caches with object sizes just above a - * power of two have a significant amount of internal fragmentation. - */ - if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + - 2 * sizeof(unsigned long long))) - flags |= SLAB_RED_ZONE | SLAB_STORE_USER; - if (!(flags & SLAB_DESTROY_BY_RCU)) - flags |= SLAB_POISON; -#endif - if (flags & SLAB_DESTROY_BY_RCU) - BUG_ON(flags & SLAB_POISON); -#endif - /* - * Always checks flags, a caller might be expecting debug support which - * isn't available. - */ - BUG_ON(flags & ~CREATE_MASK); - - /* - * Check that size is in terms of words. This is needed to avoid - * unaligned accesses for some archs when redzoning is used, and makes - * sure any on-slab bufctl's are also correctly aligned. - */ - if (size & (BYTES_PER_WORD - 1)) { - size += (BYTES_PER_WORD - 1); - size &= ~(BYTES_PER_WORD - 1); - } - - /* calculate the final buffer alignment: */ - - /* 1) arch recommendation: can be overridden for debug */ - if (flags & SLAB_HWCACHE_ALIGN) { - /* - * Default alignment: as specified by the arch code. Except if - * an object is really small, then squeeze multiple objects into - * one cacheline. - */ - ralign = cache_line_size(); - while (size <= ralign / 2) - ralign /= 2; - } else { - ralign = BYTES_PER_WORD; - } - - /* - * Redzoning and user store require word alignment or possibly larger. - * Note this will be overridden by architecture or caller mandated - * alignment if either is greater than BYTES_PER_WORD. - */ - if (flags & SLAB_STORE_USER) - ralign = BYTES_PER_WORD; - - if (flags & SLAB_RED_ZONE) { - ralign = REDZONE_ALIGN; - /* If redzoning, ensure that the second redzone is suitably - * aligned, by adjusting the object size accordingly. */ - size += REDZONE_ALIGN - 1; - size &= ~(REDZONE_ALIGN - 1); - } - - /* 2) arch mandated alignment */ - if (ralign < ARCH_SLAB_MINALIGN) { - ralign = ARCH_SLAB_MINALIGN; - } - /* 3) caller mandated alignment */ - if (ralign < align) { - ralign = align; - } - /* disable debug if necessary */ - if (ralign > __alignof__(unsigned long long)) - flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); - /* - * 4) Store it. - */ - align = ralign; - - /* Get cache's description obj. */ - cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL); - if (!cachep) - goto oops; - -#if DEBUG - cachep->obj_size = size; - - /* - * Both debugging options require word-alignment which is calculated - * into align above. - */ - if (flags & SLAB_RED_ZONE) { - /* add space for red zone words */ - cachep->obj_offset += sizeof(unsigned long long); - size += 2 * sizeof(unsigned long long); - } - if (flags & SLAB_STORE_USER) { - /* user store requires one word storage behind the end of - * the real object. But if the second red zone needs to be - * aligned to 64 bits, we must allow that much space. - */ - if (flags & SLAB_RED_ZONE) - size += REDZONE_ALIGN; - else - size += BYTES_PER_WORD; - } -#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC) - if (size >= malloc_sizes[INDEX_L3 + 1].cs_size - && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) { - cachep->obj_offset += PAGE_SIZE - size; - size = PAGE_SIZE; - } -#endif -#endif - - /* - * Determine if the slab management is 'on' or 'off' slab. - * (bootstrapping cannot cope with offslab caches so don't do - * it too early on.) - */ - if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init) - /* - * Size is large, assume best to place the slab management obj - * off-slab (should allow better packing of objs). - */ - flags |= CFLGS_OFF_SLAB; - - size = ALIGN(size, align); - - left_over = calculate_slab_order(cachep, size, align, flags); - - if (!cachep->num) { - printk(KERN_ERR - "kmem_cache_create: couldn't create cache %s.\n", name); - kmem_cache_free(&cache_cache, cachep); - cachep = NULL; - goto oops; - } - slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t) - + sizeof(struct slab), align); - - /* - * If the slab has been placed off-slab, and we have enough space then - * move it on-slab. This is at the expense of any extra colouring. - */ - if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) { - flags &= ~CFLGS_OFF_SLAB; - left_over -= slab_size; - } - - if (flags & CFLGS_OFF_SLAB) { - /* really off slab. No need for manual alignment */ - slab_size = - cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab); - } - - cachep->colour_off = cache_line_size(); - /* Offset must be a multiple of the alignment. */ - if (cachep->colour_off < align) - cachep->colour_off = align; - cachep->colour = left_over / cachep->colour_off; - cachep->slab_size = slab_size; - cachep->flags = flags; - cachep->gfpflags = 0; - if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA)) - cachep->gfpflags |= GFP_DMA; - cachep->buffer_size = size; - cachep->reciprocal_buffer_size = reciprocal_value(size); - - if (flags & CFLGS_OFF_SLAB) { - cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u); - /* - * This is a possibility for one of the malloc_sizes caches. - * But since we go off slab only for object size greater than - * PAGE_SIZE/8, and malloc_sizes gets created in ascending order, - * this should not happen at all. - * But leave a BUG_ON for some lucky dude. - */ - BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache)); - } - cachep->ctor = ctor; - cachep->name = name; - - if (setup_cpu_cache(cachep)) { - __kmem_cache_destroy(cachep); - cachep = NULL; - goto oops; - } - - /* cache setup completed, link it into the list */ - list_add(&cachep->next, &cache_chain); -oops: - if (!cachep && (flags & SLAB_PANIC)) - panic("kmem_cache_create(): failed to create slab `%s'\n", - name); - mutex_unlock(&cache_chain_mutex); - put_online_cpus(); - return cachep; -} -EXPORT_SYMBOL(kmem_cache_create); - -#if DEBUG -static void check_irq_off(void) -{ - BUG_ON(!irqs_disabled()); -} - -static void check_irq_on(void) -{ - BUG_ON(irqs_disabled()); -} - -static void check_spinlock_acquired(struct kmem_cache *cachep) -{ -#ifdef CONFIG_SMP - check_irq_off(); - assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock); -#endif -} - -static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) -{ -#ifdef CONFIG_SMP - check_irq_off(); - assert_spin_locked(&cachep->nodelists[node]->list_lock); -#endif -} - -#else -#define check_irq_off() do { } while(0) -#define check_irq_on() do { } while(0) -#define check_spinlock_acquired(x) do { } while(0) -#define check_spinlock_acquired_node(x, y) do { } while(0) -#endif - -static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3, - struct array_cache *ac, - int force, int node); - -static void do_drain(void *arg) -{ - struct kmem_cache *cachep = arg; - struct array_cache *ac; - int node = numa_node_id(); - - check_irq_off(); - ac = cpu_cache_get(cachep); - spin_lock(&cachep->nodelists[node]->list_lock); - free_block(cachep, ac->entry, ac->avail, node); - spin_unlock(&cachep->nodelists[node]->list_lock); - ac->avail = 0; -} - -static void drain_cpu_caches(struct kmem_cache *cachep) -{ - struct kmem_list3 *l3; - int node; - - on_each_cpu(do_drain, cachep, 1, 1); - check_irq_on(); - for_each_online_node(node) { - l3 = cachep->nodelists[node]; - if (l3 && l3->alien) - drain_alien_cache(cachep, l3->alien); - } - - for_each_online_node(node) { - l3 = cachep->nodelists[node]; - if (l3) - drain_array(cachep, l3, l3->shared, 1, node); - } -} - -/* - * Remove slabs from the list of free slabs. - * Specify the number of slabs to drain in tofree. - * - * Returns the actual number of slabs released. - */ -static int drain_freelist(struct kmem_cache *cache, - struct kmem_list3 *l3, int tofree) -{ - struct list_head *p; - int nr_freed; - struct slab *slabp; - - nr_freed = 0; - while (nr_freed < tofree && !list_empty(&l3->slabs_free)) { - - spin_lock_irq(&l3->list_lock); - p = l3->slabs_free.prev; - if (p == &l3->slabs_free) { - spin_unlock_irq(&l3->list_lock); - goto out; - } - - slabp = list_entry(p, struct slab, list); -#if DEBUG - BUG_ON(slabp->inuse); -#endif - list_del(&slabp->list); - /* - * Safe to drop the lock. The slab is no longer linked - * to the cache. - */ - l3->free_objects -= cache->num; - spin_unlock_irq(&l3->list_lock); - slab_destroy(cache, slabp); - nr_freed++; - } -out: - return nr_freed; -} - -/* Called with cache_chain_mutex held to protect against cpu hotplug */ -static int __cache_shrink(struct kmem_cache *cachep) -{ - int ret = 0, i = 0; - struct kmem_list3 *l3; - - drain_cpu_caches(cachep); - - check_irq_on(); - for_each_online_node(i) { - l3 = cachep->nodelists[i]; - if (!l3) - continue; - - drain_freelist(cachep, l3, l3->free_objects); - - ret += !list_empty(&l3->slabs_full) || - !list_empty(&l3->slabs_partial); - } - return (ret ? 1 : 0); -} - -/** - * kmem_cache_shrink - Shrink a cache. - * @cachep: The cache to shrink. - * - * Releases as many slabs as possible for a cache. - * To help debugging, a zero exit status indicates all slabs were released. - */ -int kmem_cache_shrink(struct kmem_cache *cachep) -{ - int ret; - BUG_ON(!cachep || in_interrupt()); - - get_online_cpus(); - mutex_lock(&cache_chain_mutex); - ret = __cache_shrink(cachep); - mutex_unlock(&cache_chain_mutex); - put_online_cpus(); - return ret; -} -EXPORT_SYMBOL(kmem_cache_shrink); - -/** - * kmem_cache_destroy - delete a cache - * @cachep: the cache to destroy - * - * Remove a &struct kmem_cache object from the slab cache. - * - * It is expected this function will be called by a module when it is - * unloaded. This will remove the cache completely, and avoid a duplicate - * cache being allocated each time a module is loaded and unloaded, if the - * module doesn't have persistent in-kernel storage across loads and unloads. - * - * The cache must be empty before calling this function. - * - * The caller must guarantee that noone will allocate memory from the cache - * during the kmem_cache_destroy(). - */ -void kmem_cache_destroy(struct kmem_cache *cachep) -{ - BUG_ON(!cachep || in_interrupt()); - - /* Find the cache in the chain of caches. */ - get_online_cpus(); - mutex_lock(&cache_chain_mutex); - /* - * the chain is never empty, cache_cache is never destroyed - */ - list_del(&cachep->next); - if (__cache_shrink(cachep)) { - slab_error(cachep, "Can't free all objects"); - list_add(&cachep->next, &cache_chain); - mutex_unlock(&cache_chain_mutex); - put_online_cpus(); - return; - } - - if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) - synchronize_rcu(); - - __kmem_cache_destroy(cachep); - mutex_unlock(&cache_chain_mutex); - put_online_cpus(); -} -EXPORT_SYMBOL(kmem_cache_destroy); - -/* - * Get the memory for a slab management obj. - * For a slab cache when the slab descriptor is off-slab, slab descriptors - * always come from malloc_sizes caches. The slab descriptor cannot - * come from the same cache which is getting created because, - * when we are searching for an appropriate cache for these - * descriptors in kmem_cache_create, we search through the malloc_sizes array. - * If we are creating a malloc_sizes cache here it would not be visible to - * kmem_find_general_cachep till the initialization is complete. - * Hence we cannot have slabp_cache same as the original cache. - */ -static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp, - int colour_off, gfp_t local_flags, - int nodeid) -{ - struct slab *slabp; - - if (OFF_SLAB(cachep)) { - /* Slab management obj is off-slab. */ - slabp = kmem_cache_alloc_node(cachep->slabp_cache, - local_flags & ~GFP_THISNODE, nodeid); - if (!slabp) - return NULL; - } else { - slabp = objp + colour_off; - colour_off += cachep->slab_size; - } - slabp->inuse = 0; - slabp->colouroff = colour_off; - slabp->s_mem = objp + colour_off; - slabp->nodeid = nodeid; - return slabp; -} - -static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp) -{ - return (kmem_bufctl_t *) (slabp + 1); -} - -static void cache_init_objs(struct kmem_cache *cachep, - struct slab *slabp) -{ - int i; - - for (i = 0; i < cachep->num; i++) { - void *objp = index_to_obj(cachep, slabp, i); -#if DEBUG - /* need to poison the objs? */ - if (cachep->flags & SLAB_POISON) - poison_obj(cachep, objp, POISON_FREE); - if (cachep->flags & SLAB_STORE_USER) - *dbg_userword(cachep, objp) = NULL; - - if (cachep->flags & SLAB_RED_ZONE) { - *dbg_redzone1(cachep, objp) = RED_INACTIVE; - *dbg_redzone2(cachep, objp) = RED_INACTIVE; - } - /* - * Constructors are not allowed to allocate memory from the same - * cache which they are a constructor for. Otherwise, deadlock. - * They must also be threaded. - */ - if (cachep->ctor && !(cachep->flags & SLAB_POISON)) - cachep->ctor(cachep, objp + obj_offset(cachep)); - - if (cachep->flags & SLAB_RED_ZONE) { - if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) - slab_error(cachep, "constructor overwrote the" - " end of an object"); - if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) - slab_error(cachep, "constructor overwrote the" - " start of an object"); - } - if ((cachep->buffer_size % PAGE_SIZE) == 0 && - OFF_SLAB(cachep) && cachep->flags & SLAB_POISON) - kernel_map_pages(virt_to_page(objp), - cachep->buffer_size / PAGE_SIZE, 0); -#else - if (cachep->ctor) - cachep->ctor(cachep, objp); -#endif - slab_bufctl(slabp)[i] = i + 1; - } - slab_bufctl(slabp)[i - 1] = BUFCTL_END; - slabp->free = 0; -} - -static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags) -{ - if (CONFIG_ZONE_DMA_FLAG) { - if (flags & GFP_DMA) - BUG_ON(!(cachep->gfpflags & GFP_DMA)); - else - BUG_ON(cachep->gfpflags & GFP_DMA); - } -} - -static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp, - int nodeid) -{ - void *objp = index_to_obj(cachep, slabp, slabp->free); - kmem_bufctl_t next; - - slabp->inuse++; - next = slab_bufctl(slabp)[slabp->free]; -#if DEBUG - slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE; - WARN_ON(slabp->nodeid != nodeid); -#endif - slabp->free = next; - - return objp; -} - -static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp, - void *objp, int nodeid) -{ - unsigned int objnr = obj_to_index(cachep, slabp, objp); - -#if DEBUG - /* Verify that the slab belongs to the intended node */ - WARN_ON(slabp->nodeid != nodeid); - - if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) { - printk(KERN_ERR "slab: double free detected in cache " - "'%s', objp %p\n", cachep->name, objp); - BUG(); - } -#endif - slab_bufctl(slabp)[objnr] = slabp->free; - slabp->free = objnr; - slabp->inuse--; -} - -/* - * Map pages beginning at addr to the given cache and slab. This is required - * for the slab allocator to be able to lookup the cache and slab of a - * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging. - */ -static void slab_map_pages(struct kmem_cache *cache, struct slab *slab, - void *addr) -{ - int nr_pages; - struct page *page; - - page = virt_to_page(addr); - - nr_pages = 1; - if (likely(!PageCompound(page))) - nr_pages <<= cache->gfporder; - - do { - page_set_cache(page, cache); - page_set_slab(page, slab); - page++; - } while (--nr_pages); -} - -/* - * Grow (by 1) the number of slabs within a cache. This is called by - * kmem_cache_alloc() when there are no active objs left in a cache. - */ -static int cache_grow(struct kmem_cache *cachep, - gfp_t flags, int nodeid, void *objp) -{ - struct slab *slabp; - size_t offset; - gfp_t local_flags; - struct kmem_list3 *l3; - - /* - * Be lazy and only check for valid flags here, keeping it out of the - * critical path in kmem_cache_alloc(). - */ - BUG_ON(flags & GFP_SLAB_BUG_MASK); - local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); - - /* Take the l3 list lock to change the colour_next on this node */ - check_irq_off(); - l3 = cachep->nodelists[nodeid]; - spin_lock(&l3->list_lock); - - /* Get colour for the slab, and cal the next value. */ - offset = l3->colour_next; - l3->colour_next++; - if (l3->colour_next >= cachep->colour) - l3->colour_next = 0; - spin_unlock(&l3->list_lock); - - offset *= cachep->colour_off; - - if (local_flags & __GFP_WAIT) - local_irq_enable(); - - /* - * The test for missing atomic flag is performed here, rather than - * the more obvious place, simply to reduce the critical path length - * in kmem_cache_alloc(). If a caller is seriously mis-behaving they - * will eventually be caught here (where it matters). - */ - kmem_flagcheck(cachep, flags); - - /* - * Get mem for the objs. Attempt to allocate a physical page from - * 'nodeid'. - */ - if (!objp) - objp = kmem_getpages(cachep, local_flags, nodeid); - if (!objp) - goto failed; - - /* Get slab management. */ - slabp = alloc_slabmgmt(cachep, objp, offset, - local_flags & ~GFP_CONSTRAINT_MASK, nodeid); - if (!slabp) - goto opps1; - - slabp->nodeid = nodeid; - slab_map_pages(cachep, slabp, objp); - - cache_init_objs(cachep, slabp); - - if (local_flags & __GFP_WAIT) - local_irq_disable(); - check_irq_off(); - spin_lock(&l3->list_lock); - - /* Make slab active. */ - list_add_tail(&slabp->list, &(l3->slabs_free)); - STATS_INC_GROWN(cachep); - l3->free_objects += cachep->num; - spin_unlock(&l3->list_lock); - return 1; -opps1: - kmem_freepages(cachep, objp); -failed: - if (local_flags & __GFP_WAIT) - local_irq_disable(); - return 0; -} - -#if DEBUG - -/* - * Perform extra freeing checks: - * - detect bad pointers. - * - POISON/RED_ZONE checking - */ -static void kfree_debugcheck(const void *objp) -{ - if (!virt_addr_valid(objp)) { - printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n", - (unsigned long)objp); - BUG(); - } -} - -static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) -{ - unsigned long long redzone1, redzone2; - - redzone1 = *dbg_redzone1(cache, obj); - redzone2 = *dbg_redzone2(cache, obj); - - /* - * Redzone is ok. - */ - if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) - return; - - if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) - slab_error(cache, "double free detected"); - else - slab_error(cache, "memory outside object was overwritten"); - - printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n", - obj, redzone1, redzone2); -} - -static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, - void *caller) -{ - struct page *page; - unsigned int objnr; - struct slab *slabp; - - objp -= obj_offset(cachep); - kfree_debugcheck(objp); - page = virt_to_head_page(objp); - - slabp = page_get_slab(page); - - if (cachep->flags & SLAB_RED_ZONE) { - verify_redzone_free(cachep, objp); - *dbg_redzone1(cachep, objp) = RED_INACTIVE; - *dbg_redzone2(cachep, objp) = RED_INACTIVE; - } - if (cachep->flags & SLAB_STORE_USER) - *dbg_userword(cachep, objp) = caller; - - objnr = obj_to_index(cachep, slabp, objp); - - BUG_ON(objnr >= cachep->num); - BUG_ON(objp != index_to_obj(cachep, slabp, objnr)); - -#ifdef CONFIG_DEBUG_SLAB_LEAK - slab_bufctl(slabp)[objnr] = BUFCTL_FREE; -#endif - if (cachep->flags & SLAB_POISON) { -#ifdef CONFIG_DEBUG_PAGEALLOC - if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) { - store_stackinfo(cachep, objp, (unsigned long)caller); - kernel_map_pages(virt_to_page(objp), - cachep->buffer_size / PAGE_SIZE, 0); - } else { - poison_obj(cachep, objp, POISON_FREE); - } -#else - poison_obj(cachep, objp, POISON_FREE); -#endif - } - return objp; -} - -static void check_slabp(struct kmem_cache *cachep, struct slab *slabp) -{ - kmem_bufctl_t i; - int entries = 0; - - /* Check slab's freelist to see if this obj is there. */ - for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) { - entries++; - if (entries > cachep->num || i >= cachep->num) - goto bad; - } - if (entries != cachep->num - slabp->inuse) { -bad: - printk(KERN_ERR "slab: Internal list corruption detected in " - "cache '%s'(%d), slabp %p(%d). Hexdump:\n", - cachep->name, cachep->num, slabp, slabp->inuse); - for (i = 0; - i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t); - i++) { - if (i % 16 == 0) - printk("\n%03x:", i); - printk(" %02x", ((unsigned char *)slabp)[i]); - } - printk("\n"); - BUG(); - } -} -#else -#define kfree_debugcheck(x) do { } while(0) -#define cache_free_debugcheck(x,objp,z) (objp) -#define check_slabp(x,y) do { } while(0) -#endif - -static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags) -{ - int batchcount; - struct kmem_list3 *l3; - struct array_cache *ac; - int node; - - node = numa_node_id(); - - check_irq_off(); - ac = cpu_cache_get(cachep); -retry: - batchcount = ac->batchcount; - if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { - /* - * If there was little recent activity on this cache, then - * perform only a partial refill. Otherwise we could generate - * refill bouncing. - */ - batchcount = BATCHREFILL_LIMIT; - } - l3 = cachep->nodelists[node]; - - BUG_ON(ac->avail > 0 || !l3); - spin_lock(&l3->list_lock); - - /* See if we can refill from the shared array */ - if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) - goto alloc_done; - - while (batchcount > 0) { - struct list_head *entry; - struct slab *slabp; - /* Get slab alloc is to come from. */ - entry = l3->slabs_partial.next; - if (entry == &l3->slabs_partial) { - l3->free_touched = 1; - entry = l3->slabs_free.next; - if (entry == &l3->slabs_free) - goto must_grow; - } - - slabp = list_entry(entry, struct slab, list); - check_slabp(cachep, slabp); - check_spinlock_acquired(cachep); - - /* - * The slab was either on partial or free list so - * there must be at least one object available for - * allocation. - */ - BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num); - - while (slabp->inuse < cachep->num && batchcount--) { - STATS_INC_ALLOCED(cachep); - STATS_INC_ACTIVE(cachep); - STATS_SET_HIGH(cachep); - - ac->entry[ac->avail++] = slab_get_obj(cachep, slabp, - node); - } - check_slabp(cachep, slabp); - - /* move slabp to correct slabp list: */ - list_del(&slabp->list); - if (slabp->free == BUFCTL_END) - list_add(&slabp->list, &l3->slabs_full); - else - list_add(&slabp->list, &l3->slabs_partial); - } - -must_grow: - l3->free_objects -= ac->avail; -alloc_done: - spin_unlock(&l3->list_lock); - - if (unlikely(!ac->avail)) { - int x; - x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL); - - /* cache_grow can reenable interrupts, then ac could change. */ - ac = cpu_cache_get(cachep); - if (!x && ac->avail == 0) /* no objects in sight? abort */ - return NULL; - - if (!ac->avail) /* objects refilled by interrupt? */ - goto retry; - } - ac->touched = 1; - return ac->entry[--ac->avail]; -} - -static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep, - gfp_t flags) -{ - might_sleep_if(flags & __GFP_WAIT); -#if DEBUG - kmem_flagcheck(cachep, flags); -#endif -} - -#if DEBUG -static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, - gfp_t flags, void *objp, void *caller) -{ - if (!objp) - return objp; - if (cachep->flags & SLAB_POISON) { -#ifdef CONFIG_DEBUG_PAGEALLOC - if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) - kernel_map_pages(virt_to_page(objp), - cachep->buffer_size / PAGE_SIZE, 1); - else - check_poison_obj(cachep, objp); -#else - check_poison_obj(cachep, objp); -#endif - poison_obj(cachep, objp, POISON_INUSE); - } - if (cachep->flags & SLAB_STORE_USER) - *dbg_userword(cachep, objp) = caller; - - if (cachep->flags & SLAB_RED_ZONE) { - if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || - *dbg_redzone2(cachep, objp) != RED_INACTIVE) { - slab_error(cachep, "double free, or memory outside" - " object was overwritten"); - printk(KERN_ERR - "%p: redzone 1:0x%llx, redzone 2:0x%llx\n", - objp, *dbg_redzone1(cachep, objp), - *dbg_redzone2(cachep, objp)); - } - *dbg_redzone1(cachep, objp) = RED_ACTIVE; - *dbg_redzone2(cachep, objp) = RED_ACTIVE; - } -#ifdef CONFIG_DEBUG_SLAB_LEAK - { - struct slab *slabp; - unsigned objnr; - - slabp = page_get_slab(virt_to_head_page(objp)); - objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size; - slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE; - } -#endif - objp += obj_offset(cachep); - if (cachep->ctor && cachep->flags & SLAB_POISON) - cachep->ctor(cachep, objp); -#if ARCH_SLAB_MINALIGN - if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) { - printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n", - objp, ARCH_SLAB_MINALIGN); - } -#endif - return objp; -} -#else -#define cache_alloc_debugcheck_after(a,b,objp,d) (objp) -#endif - -#ifdef CONFIG_FAILSLAB - -static struct failslab_attr { - - struct fault_attr attr; - - u32 ignore_gfp_wait; -#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS - struct dentry *ignore_gfp_wait_file; -#endif - -} failslab = { - .attr = FAULT_ATTR_INITIALIZER, - .ignore_gfp_wait = 1, -}; - -static int __init setup_failslab(char *str) -{ - return setup_fault_attr(&failslab.attr, str); -} -__setup("failslab=", setup_failslab); - -static int should_failslab(struct kmem_cache *cachep, gfp_t flags) -{ - if (cachep == &cache_cache) - return 0; - if (flags & __GFP_NOFAIL) - return 0; - if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT)) - return 0; - - return should_fail(&failslab.attr, obj_size(cachep)); -} - -#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS - -static int __init failslab_debugfs(void) -{ - mode_t mode = S_IFREG | S_IRUSR | S_IWUSR; - struct dentry *dir; - int err; - - err = init_fault_attr_dentries(&failslab.attr, "failslab"); - if (err) - return err; - dir = failslab.attr.dentries.dir; - - failslab.ignore_gfp_wait_file = - debugfs_create_bool("ignore-gfp-wait", mode, dir, - &failslab.ignore_gfp_wait); - - if (!failslab.ignore_gfp_wait_file) { - err = -ENOMEM; - debugfs_remove(failslab.ignore_gfp_wait_file); - cleanup_fault_attr_dentries(&failslab.attr); - } - - return err; -} - -late_initcall(failslab_debugfs); - -#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ - -#else /* CONFIG_FAILSLAB */ - -static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags) -{ - return 0; -} - -#endif /* CONFIG_FAILSLAB */ - -static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) -{ - void *objp; - struct array_cache *ac; - - check_irq_off(); - - ac = cpu_cache_get(cachep); - if (likely(ac->avail)) { - STATS_INC_ALLOCHIT(cachep); - ac->touched = 1; - objp = ac->entry[--ac->avail]; - } else { - STATS_INC_ALLOCMISS(cachep); - objp = cache_alloc_refill(cachep, flags); - } - return objp; -} - -#ifdef CONFIG_NUMA -/* - * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY. - * - * If we are in_interrupt, then process context, including cpusets and - * mempolicy, may not apply and should not be used for allocation policy. - */ -static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) -{ - int nid_alloc, nid_here; - - if (in_interrupt() || (flags & __GFP_THISNODE)) - return NULL; - nid_alloc = nid_here = numa_node_id(); - if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) - nid_alloc = cpuset_mem_spread_node(); - else if (current->mempolicy) - nid_alloc = slab_node(current->mempolicy); - if (nid_alloc != nid_here) - return ____cache_alloc_node(cachep, flags, nid_alloc); - return NULL; -} - -/* - * Fallback function if there was no memory available and no objects on a - * certain node and fall back is permitted. First we scan all the - * available nodelists for available objects. If that fails then we - * perform an allocation without specifying a node. This allows the page - * allocator to do its reclaim / fallback magic. We then insert the - * slab into the proper nodelist and then allocate from it. - */ -static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) -{ - struct zonelist *zonelist; - gfp_t local_flags; - struct zone **z; - void *obj = NULL; - int nid; - - if (flags & __GFP_THISNODE) - return NULL; - - zonelist = &NODE_DATA(slab_node(current->mempolicy)) - ->node_zonelists[gfp_zone(flags)]; - local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); - -retry: - /* - * Look through allowed nodes for objects available - * from existing per node queues. - */ - for (z = zonelist->zones; *z && !obj; z++) { - nid = zone_to_nid(*z); - - if (cpuset_zone_allowed_hardwall(*z, flags) && - cache->nodelists[nid] && - cache->nodelists[nid]->free_objects) - obj = ____cache_alloc_node(cache, - flags | GFP_THISNODE, nid); - } - - if (!obj) { - /* - * This allocation will be performed within the constraints - * of the current cpuset / memory policy requirements. - * We may trigger various forms of reclaim on the allowed - * set and go into memory reserves if necessary. - */ - if (local_flags & __GFP_WAIT) - local_irq_enable(); - kmem_flagcheck(cache, flags); - obj = kmem_getpages(cache, flags, -1); - if (local_flags & __GFP_WAIT) - local_irq_disable(); - if (obj) { - /* - * Insert into the appropriate per node queues - */ - nid = page_to_nid(virt_to_page(obj)); - if (cache_grow(cache, flags, nid, obj)) { - obj = ____cache_alloc_node(cache, - flags | GFP_THISNODE, nid); - if (!obj) - /* - * Another processor may allocate the - * objects in the slab since we are - * not holding any locks. - */ - goto retry; - } else { - /* cache_grow already freed obj */ - obj = NULL; - } - } - } - return obj; -} - -/* - * A interface to enable slab creation on nodeid - */ -static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, - int nodeid) -{ - struct list_head *entry; - struct slab *slabp; - struct kmem_list3 *l3; - void *obj; - int x; - - l3 = cachep->nodelists[nodeid]; - BUG_ON(!l3); - -retry: - check_irq_off(); - spin_lock(&l3->list_lock); - entry = l3->slabs_partial.next; - if (entry == &l3->slabs_partial) { - l3->free_touched = 1; - entry = l3->slabs_free.next; - if (entry == &l3->slabs_free) - goto must_grow; - } - - slabp = list_entry(entry, struct slab, list); - check_spinlock_acquired_node(cachep, nodeid); - check_slabp(cachep, slabp); - - STATS_INC_NODEALLOCS(cachep); - STATS_INC_ACTIVE(cachep); - STATS_SET_HIGH(cachep); - - BUG_ON(slabp->inuse == cachep->num); - - obj = slab_get_obj(cachep, slabp, nodeid); - check_slabp(cachep, slabp); - l3->free_objects--; - /* move slabp to correct slabp list: */ - list_del(&slabp->list); - - if (slabp->free == BUFCTL_END) - list_add(&slabp->list, &l3->slabs_full); - else - list_add(&slabp->list, &l3->slabs_partial); - - spin_unlock(&l3->list_lock); - goto done; - -must_grow: - spin_unlock(&l3->list_lock); - x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL); - if (x) - goto retry; - - return fallback_alloc(cachep, flags); - -done: - return obj; -} - -/** - * kmem_cache_alloc_node - Allocate an object on the specified node - * @cachep: The cache to allocate from. - * @flags: See kmalloc(). - * @nodeid: node number of the target node. - * @caller: return address of caller, used for debug information - * - * Identical to kmem_cache_alloc but it will allocate memory on the given - * node, which can improve the performance for cpu bound structures. - * - * Fallback to other node is possible if __GFP_THISNODE is not set. - */ -static __always_inline void * -__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, - void *caller) -{ - unsigned long save_flags; - void *ptr; - - if (should_failslab(cachep, flags)) - return NULL; - - cache_alloc_debugcheck_before(cachep, flags); - local_irq_save(save_flags); - - if (unlikely(nodeid == -1)) - nodeid = numa_node_id(); - - if (unlikely(!cachep->nodelists[nodeid])) { - /* Node not bootstrapped yet */ - ptr = fallback_alloc(cachep, flags); - goto out; - } - - if (nodeid == numa_node_id()) { - /* - * Use the locally cached objects if possible. - * However ____cache_alloc does not allow fallback - * to other nodes. It may fail while we still have - * objects on other nodes available. - */ - ptr = ____cache_alloc(cachep, flags); - if (ptr) - goto out; - } - /* ___cache_alloc_node can fall back to other nodes */ - ptr = ____cache_alloc_node(cachep, flags, nodeid); - out: - local_irq_restore(save_flags); - ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller); - - if (unlikely((flags & __GFP_ZERO) && ptr)) - memset(ptr, 0, obj_size(cachep)); - - return ptr; -} - -static __always_inline void * -__do_cache_alloc(struct kmem_cache *cache, gfp_t flags) -{ - void *objp; - - if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) { - objp = alternate_node_alloc(cache, flags); - if (objp) - goto out; - } - objp = ____cache_alloc(cache, flags); - - /* - * We may just have run out of memory on the local node. - * ____cache_alloc_node() knows how to locate memory on other nodes - */ - if (!objp) - objp = ____cache_alloc_node(cache, flags, numa_node_id()); - - out: - return objp; -} -#else - -static __always_inline void * -__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags) -{ - return ____cache_alloc(cachep, flags); -} - -#endif /* CONFIG_NUMA */ - -static __always_inline void * -__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller) -{ - unsigned long save_flags; - void *objp; - - if (should_failslab(cachep, flags)) - return NULL; - - cache_alloc_debugcheck_before(cachep, flags); - local_irq_save(save_flags); - objp = __do_cache_alloc(cachep, flags); - local_irq_restore(save_flags); - objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); - prefetchw(objp); - - if (unlikely((flags & __GFP_ZERO) && objp)) - memset(objp, 0, obj_size(cachep)); - - return objp; -} - -/* - * Caller needs to acquire correct kmem_list's list_lock - */ -static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects, - int node) -{ - int i; - struct kmem_list3 *l3; - - for (i = 0; i < nr_objects; i++) { - void *objp = objpp[i]; - struct slab *slabp; - - slabp = virt_to_slab(objp); - l3 = cachep->nodelists[node]; - list_del(&slabp->list); - check_spinlock_acquired_node(cachep, node); - check_slabp(cachep, slabp); - slab_put_obj(cachep, slabp, objp, node); - STATS_DEC_ACTIVE(cachep); - l3->free_objects++; - check_slabp(cachep, slabp); - - /* fixup slab chains */ - if (slabp->inuse == 0) { - if (l3->free_objects > l3->free_limit) { - l3->free_objects -= cachep->num; - /* No need to drop any previously held - * lock here, even if we have a off-slab slab - * descriptor it is guaranteed to come from - * a different cache, refer to comments before - * alloc_slabmgmt. - */ - slab_destroy(cachep, slabp); - } else { - list_add(&slabp->list, &l3->slabs_free); - } - } else { - /* Unconditionally move a slab to the end of the - * partial list on free - maximum time for the - * other objects to be freed, too. - */ - list_add_tail(&slabp->list, &l3->slabs_partial); - } - } -} - -static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) -{ - int batchcount; - struct kmem_list3 *l3; - int node = numa_node_id(); - - batchcount = ac->batchcount; -#if DEBUG - BUG_ON(!batchcount || batchcount > ac->avail); -#endif - check_irq_off(); - l3 = cachep->nodelists[node]; - spin_lock(&l3->list_lock); - if (l3->shared) { - struct array_cache *shared_array = l3->shared; - int max = shared_array->limit - shared_array->avail; - if (max) { - if (batchcount > max) - batchcount = max; - memcpy(&(shared_array->entry[shared_array->avail]), - ac->entry, sizeof(void *) * batchcount); - shared_array->avail += batchcount; - goto free_done; - } - } - - free_block(cachep, ac->entry, batchcount, node); -free_done: -#if STATS - { - int i = 0; - struct list_head *p; - - p = l3->slabs_free.next; - while (p != &(l3->slabs_free)) { - struct slab *slabp; - - slabp = list_entry(p, struct slab, list); - BUG_ON(slabp->inuse); - - i++; - p = p->next; - } - STATS_SET_FREEABLE(cachep, i); - } -#endif - spin_unlock(&l3->list_lock); - ac->avail -= batchcount; - memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); -} - -/* - * Release an obj back to its cache. If the obj has a constructed state, it must - * be in this state _before_ it is released. Called with disabled ints. - */ -static inline void __cache_free(struct kmem_cache *cachep, void *objp) -{ - struct array_cache *ac = cpu_cache_get(cachep); - - check_irq_off(); - objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0)); - - /* - * Skip calling cache_free_alien() when the platform is not numa. - * This will avoid cache misses that happen while accessing slabp (which - * is per page memory reference) to get nodeid. Instead use a global - * variable to skip the call, which is mostly likely to be present in - * the cache. - */ - if (numa_platform && cache_free_alien(cachep, objp)) - return; - - if (likely(ac->avail < ac->limit)) { - STATS_INC_FREEHIT(cachep); - ac->entry[ac->avail++] = objp; - return; - } else { - STATS_INC_FREEMISS(cachep); - cache_flusharray(cachep, ac); - ac->entry[ac->avail++] = objp; - } -} - -/** - * kmem_cache_alloc - Allocate an object - * @cachep: The cache to allocate from. - * @flags: See kmalloc(). - * - * Allocate an object from this cache. The flags are only relevant - * if the cache has no available objects. - */ -void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) -{ - return __cache_alloc(cachep, flags, __builtin_return_address(0)); -} -EXPORT_SYMBOL(kmem_cache_alloc); - -/** - * kmem_ptr_validate - check if an untrusted pointer might - * be a slab entry. - * @cachep: the cache we're checking against - * @ptr: pointer to validate - * - * This verifies that the untrusted pointer looks sane: - * it is _not_ a guarantee that the pointer is actually - * part of the slab cache in question, but it at least - * validates that the pointer can be dereferenced and - * looks half-way sane. - * - * Currently only used for dentry validation. - */ -int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr) -{ - unsigned long addr = (unsigned long)ptr; - unsigned long min_addr = PAGE_OFFSET; - unsigned long align_mask = BYTES_PER_WORD - 1; - unsigned long size = cachep->buffer_size; - struct page *page; - - if (unlikely(addr < min_addr)) - goto out; - if (unlikely(addr > (unsigned long)high_memory - size)) - goto out; - if (unlikely(addr & align_mask)) - goto out; - if (unlikely(!kern_addr_valid(addr))) - goto out; - if (unlikely(!kern_addr_valid(addr + size - 1))) - goto out; - page = virt_to_page(ptr); - if (unlikely(!PageSlab(page))) - goto out; - if (unlikely(page_get_cache(page) != cachep)) - goto out; - return 1; -out: - return 0; -} - -#ifdef CONFIG_NUMA -void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) -{ - return __cache_alloc_node(cachep, flags, nodeid, - __builtin_return_address(0)); -} -EXPORT_SYMBOL(kmem_cache_alloc_node); - -static __always_inline void * -__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller) -{ - struct kmem_cache *cachep; - - cachep = kmem_find_general_cachep(size, flags); - if (unlikely(ZERO_OR_NULL_PTR(cachep))) - return cachep; - return kmem_cache_alloc_node(cachep, flags, node); -} - -#ifdef CONFIG_DEBUG_SLAB -void *__kmalloc_node(size_t size, gfp_t flags, int node) -{ - return __do_kmalloc_node(size, flags, node, - __builtin_return_address(0)); -} -EXPORT_SYMBOL(__kmalloc_node); - -void *__kmalloc_node_track_caller(size_t size, gfp_t flags, - int node, void *caller) -{ - return __do_kmalloc_node(size, flags, node, caller); -} -EXPORT_SYMBOL(__kmalloc_node_track_caller); -#else -void *__kmalloc_node(size_t size, gfp_t flags, int node) -{ - return __do_kmalloc_node(size, flags, node, NULL); -} -EXPORT_SYMBOL(__kmalloc_node); -#endif /* CONFIG_DEBUG_SLAB */ -#endif /* CONFIG_NUMA */ - -/** - * __do_kmalloc - allocate memory - * @size: how many bytes of memory are required. - * @flags: the type of memory to allocate (see kmalloc). - * @caller: function caller for debug tracking of the caller - */ -static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, - void *caller) -{ - struct kmem_cache *cachep; - - /* If you want to save a few bytes .text space: replace - * __ with kmem_. - * Then kmalloc uses the uninlined functions instead of the inline - * functions. - */ - cachep = __find_general_cachep(size, flags); - if (unlikely(ZERO_OR_NULL_PTR(cachep))) - return cachep; - return __cache_alloc(cachep, flags, caller); -} - - -#ifdef CONFIG_DEBUG_SLAB -void *__kmalloc(size_t size, gfp_t flags) -{ - return __do_kmalloc(size, flags, __builtin_return_address(0)); -} -EXPORT_SYMBOL(__kmalloc); - -void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller) -{ - return __do_kmalloc(size, flags, caller); -} -EXPORT_SYMBOL(__kmalloc_track_caller); - -#else -void *__kmalloc(size_t size, gfp_t flags) -{ - return __do_kmalloc(size, flags, NULL); -} -EXPORT_SYMBOL(__kmalloc); -#endif - -/** - * kmem_cache_free - Deallocate an object - * @cachep: The cache the allocation was from. - * @objp: The previously allocated object. - * - * Free an object which was previously allocated from this - * cache. - */ -void kmem_cache_free(struct kmem_cache *cachep, void *objp) -{ - unsigned long flags; - - BUG_ON(virt_to_cache(objp) != cachep); - - local_irq_save(flags); - debug_check_no_locks_freed(objp, obj_size(cachep)); - __cache_free(cachep, objp); - local_irq_restore(flags); -} -EXPORT_SYMBOL(kmem_cache_free); - -/** - * kfree - free previously allocated memory - * @objp: pointer returned by kmalloc. - * - * If @objp is NULL, no operation is performed. - * - * Don't free memory not originally allocated by kmalloc() - * or you will run into trouble. - */ -void kfree(const void *objp) -{ - struct kmem_cache *c; - unsigned long flags; - - if (unlikely(ZERO_OR_NULL_PTR(objp))) - return; - local_irq_save(flags); - kfree_debugcheck(objp); - c = virt_to_cache(objp); - debug_check_no_locks_freed(objp, obj_size(c)); - __cache_free(c, (void *)objp); - local_irq_restore(flags); -} -EXPORT_SYMBOL(kfree); - -unsigned int kmem_cache_size(struct kmem_cache *cachep) -{ - return obj_size(cachep); -} -EXPORT_SYMBOL(kmem_cache_size); - -const char *kmem_cache_name(struct kmem_cache *cachep) -{ - return cachep->name; -} -EXPORT_SYMBOL_GPL(kmem_cache_name); - -/* - * This initializes kmem_list3 or resizes various caches for all nodes. - */ -static int alloc_kmemlist(struct kmem_cache *cachep) -{ - int node; - struct kmem_list3 *l3; - struct array_cache *new_shared; - struct array_cache **new_alien = NULL; - - for_each_node_state(node, N_NORMAL_MEMORY) { - - if (use_alien_caches) { - new_alien = alloc_alien_cache(node, cachep->limit); - if (!new_alien) - goto fail; - } - - new_shared = NULL; - if (cachep->shared) { - new_shared = alloc_arraycache(node, - cachep->shared*cachep->batchcount, - 0xbaadf00d); - if (!new_shared) { - free_alien_cache(new_alien); - goto fail; - } - } - - l3 = cachep->nodelists[node]; - if (l3) { - struct array_cache *shared = l3->shared; - - spin_lock_irq(&l3->list_lock); - - if (shared) - free_block(cachep, shared->entry, - shared->avail, node); - - l3->shared = new_shared; - if (!l3->alien) { - l3->alien = new_alien; - new_alien = NULL; - } - l3->free_limit = (1 + nr_cpus_node(node)) * - cachep->batchcount + cachep->num; - spin_unlock_irq(&l3->list_lock); - kfree(shared); - free_alien_cache(new_alien); - continue; - } - l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node); - if (!l3) { - free_alien_cache(new_alien); - kfree(new_shared); - goto fail; - } - - kmem_list3_init(l3); - l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + - ((unsigned long)cachep) % REAPTIMEOUT_LIST3; - l3->shared = new_shared; - l3->alien = new_alien; - l3->free_limit = (1 + nr_cpus_node(node)) * - cachep->batchcount + cachep->num; - cachep->nodelists[node] = l3; - } - return 0; - -fail: - if (!cachep->next.next) { - /* Cache is not active yet. Roll back what we did */ - node--; - while (node >= 0) { - if (cachep->nodelists[node]) { - l3 = cachep->nodelists[node]; - - kfree(l3->shared); - free_alien_cache(l3->alien); - kfree(l3); - cachep->nodelists[node] = NULL; - } - node--; - } - } - return -ENOMEM; -} - -struct ccupdate_struct { - struct kmem_cache *cachep; - struct array_cache *new[NR_CPUS]; -}; - -static void do_ccupdate_local(void *info) -{ - struct ccupdate_struct *new = info; - struct array_cache *old; - - check_irq_off(); - old = cpu_cache_get(new->cachep); - - new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()]; - new->new[smp_processor_id()] = old; -} - -/* Always called with the cache_chain_mutex held */ -static int do_tune_cpucache(struct kmem_cache *cachep, int limit, - int batchcount, int shared) -{ - struct ccupdate_struct *new; - int i; - - new = kzalloc(sizeof(*new), GFP_KERNEL); - if (!new) - return -ENOMEM; - - for_each_online_cpu(i) { - new->new[i] = alloc_arraycache(cpu_to_node(i), limit, - batchcount); - if (!new->new[i]) { - for (i--; i >= 0; i--) - kfree(new->new[i]); - kfree(new); - return -ENOMEM; - } - } - new->cachep = cachep; - - on_each_cpu(do_ccupdate_local, (void *)new, 1, 1); - - check_irq_on(); - cachep->batchcount = batchcount; - cachep->limit = limit; - cachep->shared = shared; - - for_each_online_cpu(i) { - struct array_cache *ccold = new->new[i]; - if (!ccold) - continue; - spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock); - free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i)); - spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock); - kfree(ccold); - } - kfree(new); - return alloc_kmemlist(cachep); -} - -/* Called with cache_chain_mutex held always */ -static int enable_cpucache(struct kmem_cache *cachep) -{ - int err; - int limit, shared; - - /* - * The head array serves three purposes: - * - create a LIFO ordering, i.e. return objects that are cache-warm - * - reduce the number of spinlock operations. - * - reduce the number of linked list operations on the slab and - * bufctl chains: array operations are cheaper. - * The numbers are guessed, we should auto-tune as described by - * Bonwick. - */ - if (cachep->buffer_size > 131072) - limit = 1; - else if (cachep->buffer_size > PAGE_SIZE) - limit = 8; - else if (cachep->buffer_size > 1024) - limit = 24; - else if (cachep->buffer_size > 256) - limit = 54; - else - limit = 120; - - /* - * CPU bound tasks (e.g. network routing) can exhibit cpu bound - * allocation behaviour: Most allocs on one cpu, most free operations - * on another cpu. For these cases, an efficient object passing between - * cpus is necessary. This is provided by a shared array. The array - * replaces Bonwick's magazine layer. - * On uniprocessor, it's functionally equivalent (but less efficient) - * to a larger limit. Thus disabled by default. - */ - shared = 0; - if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1) - shared = 8; - -#if DEBUG - /* - * With debugging enabled, large batchcount lead to excessively long - * periods with disabled local interrupts. Limit the batchcount - */ - if (limit > 32) - limit = 32; -#endif - err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared); - if (err) - printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n", - cachep->name, -err); - return err; -} - -/* - * Drain an array if it contains any elements taking the l3 lock only if - * necessary. Note that the l3 listlock also protects the array_cache - * if drain_array() is used on the shared array. - */ -void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3, - struct array_cache *ac, int force, int node) -{ - int tofree; - - if (!ac || !ac->avail) - return; - if (ac->touched && !force) { - ac->touched = 0; - } else { - spin_lock_irq(&l3->list_lock); - if (ac->avail) { - tofree = force ? ac->avail : (ac->limit + 4) / 5; - if (tofree > ac->avail) - tofree = (ac->avail + 1) / 2; - free_block(cachep, ac->entry, tofree, node); - ac->avail -= tofree; - memmove(ac->entry, &(ac->entry[tofree]), - sizeof(void *) * ac->avail); - } - spin_unlock_irq(&l3->list_lock); - } -} - -/** - * cache_reap - Reclaim memory from caches. - * @w: work descriptor - * - * Called from workqueue/eventd every few seconds. - * Purpose: - * - clear the per-cpu caches for this CPU. - * - return freeable pages to the main free memory pool. - * - * If we cannot acquire the cache chain mutex then just give up - we'll try - * again on the next iteration. - */ -static void cache_reap(struct work_struct *w) -{ - struct kmem_cache *searchp; - struct kmem_list3 *l3; - int node = numa_node_id(); - struct delayed_work *work = - container_of(w, struct delayed_work, work); - - if (!mutex_trylock(&cache_chain_mutex)) - /* Give up. Setup the next iteration. */ - goto out; - - list_for_each_entry(searchp, &cache_chain, next) { - check_irq_on(); - - /* - * We only take the l3 lock if absolutely necessary and we - * have established with reasonable certainty that - * we can do some work if the lock was obtained. - */ - l3 = searchp->nodelists[node]; - - reap_alien(searchp, l3); - - drain_array(searchp, l3, cpu_cache_get(searchp), 0, node); - - /* - * These are racy checks but it does not matter - * if we skip one check or scan twice. - */ - if (time_after(l3->next_reap, jiffies)) - goto next; - - l3->next_reap = jiffies + REAPTIMEOUT_LIST3; - - drain_array(searchp, l3, l3->shared, 0, node); - - if (l3->free_touched) - l3->free_touched = 0; - else { - int freed; - - freed = drain_freelist(searchp, l3, (l3->free_limit + - 5 * searchp->num - 1) / (5 * searchp->num)); - STATS_ADD_REAPED(searchp, freed); - } -next: - cond_resched(); - } - check_irq_on(); - mutex_unlock(&cache_chain_mutex); - next_reap_node(); -out: - /* Set up the next iteration */ - schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC)); -} - -#ifdef CONFIG_PROC_FS - -static void print_slabinfo_header(struct seq_file *m) -{ - /* - * Output format version, so at least we can change it - * without _too_ many complaints. - */ -#if STATS - seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); -#else - seq_puts(m, "slabinfo - version: 2.1\n"); -#endif - seq_puts(m, "# name " - " "); - seq_puts(m, " : tunables "); - seq_puts(m, " : slabdata "); -#if STATS - seq_puts(m, " : globalstat " - " "); - seq_puts(m, " : cpustat "); -#endif - seq_putc(m, '\n'); -} - -static void *s_start(struct seq_file *m, loff_t *pos) -{ - loff_t n = *pos; - - mutex_lock(&cache_chain_mutex); - if (!n) - print_slabinfo_header(m); - - return seq_list_start(&cache_chain, *pos); -} - -static void *s_next(struct seq_file *m, void *p, loff_t *pos) -{ - return seq_list_next(p, &cache_chain, pos); -} - -static void s_stop(struct seq_file *m, void *p) -{ - mutex_unlock(&cache_chain_mutex); -} - -static int s_show(struct seq_file *m, void *p) -{ - struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next); - struct slab *slabp; - unsigned long active_objs; - unsigned long num_objs; - unsigned long active_slabs = 0; - unsigned long num_slabs, free_objects = 0, shared_avail = 0; - const char *name; - char *error = NULL; - int node; - struct kmem_list3 *l3; - - active_objs = 0; - num_slabs = 0; - for_each_online_node(node) { - l3 = cachep->nodelists[node]; - if (!l3) - continue; - - check_irq_on(); - spin_lock_irq(&l3->list_lock); - - list_for_each_entry(slabp, &l3->slabs_full, list) { - if (slabp->inuse != cachep->num && !error) - error = "slabs_full accounting error"; - active_objs += cachep->num; - active_slabs++; - } - list_for_each_entry(slabp, &l3->slabs_partial, list) { - if (slabp->inuse == cachep->num && !error) - error = "slabs_partial inuse accounting error"; - if (!slabp->inuse && !error) - error = "slabs_partial/inuse accounting error"; - active_objs += slabp->inuse; - active_slabs++; - } - list_for_each_entry(slabp, &l3->slabs_free, list) { - if (slabp->inuse && !error) - error = "slabs_free/inuse accounting error"; - num_slabs++; - } - free_objects += l3->free_objects; - if (l3->shared) - shared_avail += l3->shared->avail; - - spin_unlock_irq(&l3->list_lock); - } - num_slabs += active_slabs; - num_objs = num_slabs * cachep->num; - if (num_objs - active_objs != free_objects && !error) - error = "free_objects accounting error"; - - name = cachep->name; - if (error) - printk(KERN_ERR "slab: cache %s error: %s\n", name, error); - - seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", - name, active_objs, num_objs, cachep->buffer_size, - cachep->num, (1 << cachep->gfporder)); - seq_printf(m, " : tunables %4u %4u %4u", - cachep->limit, cachep->batchcount, cachep->shared); - seq_printf(m, " : slabdata %6lu %6lu %6lu", - active_slabs, num_slabs, shared_avail); -#if STATS - { /* list3 stats */ - unsigned long high = cachep->high_mark; - unsigned long allocs = cachep->num_allocations; - unsigned long grown = cachep->grown; - unsigned long reaped = cachep->reaped; - unsigned long errors = cachep->errors; - unsigned long max_freeable = cachep->max_freeable; - unsigned long node_allocs = cachep->node_allocs; - unsigned long node_frees = cachep->node_frees; - unsigned long overflows = cachep->node_overflow; - - seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \ - %4lu %4lu %4lu %4lu %4lu", allocs, high, grown, - reaped, errors, max_freeable, node_allocs, - node_frees, overflows); - } - /* cpu stats */ - { - unsigned long allochit = atomic_read(&cachep->allochit); - unsigned long allocmiss = atomic_read(&cachep->allocmiss); - unsigned long freehit = atomic_read(&cachep->freehit); - unsigned long freemiss = atomic_read(&cachep->freemiss); - - seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", - allochit, allocmiss, freehit, freemiss); - } -#endif - seq_putc(m, '\n'); - return 0; -} - -/* - * slabinfo_op - iterator that generates /proc/slabinfo - * - * Output layout: - * cache-name - * num-active-objs - * total-objs - * object size - * num-active-slabs - * total-slabs - * num-pages-per-slab - * + further values on SMP and with statistics enabled - */ - -const struct seq_operations slabinfo_op = { - .start = s_start, - .next = s_next, - .stop = s_stop, - .show = s_show, -}; - -#define MAX_SLABINFO_WRITE 128 -/** - * slabinfo_write - Tuning for the slab allocator - * @file: unused - * @buffer: user buffer - * @count: data length - * @ppos: unused - */ -ssize_t slabinfo_write(struct file *file, const char __user * buffer, - size_t count, loff_t *ppos) -{ - char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; - int limit, batchcount, shared, res; - struct kmem_cache *cachep; - - if (count > MAX_SLABINFO_WRITE) - return -EINVAL; - if (copy_from_user(&kbuf, buffer, count)) - return -EFAULT; - kbuf[MAX_SLABINFO_WRITE] = '\0'; - - tmp = strchr(kbuf, ' '); - if (!tmp) - return -EINVAL; - *tmp = '\0'; - tmp++; - if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) - return -EINVAL; - - /* Find the cache in the chain of caches. */ - mutex_lock(&cache_chain_mutex); - res = -EINVAL; - list_for_each_entry(cachep, &cache_chain, next) { - if (!strcmp(cachep->name, kbuf)) { - if (limit < 1 || batchcount < 1 || - batchcount > limit || shared < 0) { - res = 0; - } else { - res = do_tune_cpucache(cachep, limit, - batchcount, shared); - } - break; - } - } - mutex_unlock(&cache_chain_mutex); - if (res >= 0) - res = count; - return res; -} - -#ifdef CONFIG_DEBUG_SLAB_LEAK - -static void *leaks_start(struct seq_file *m, loff_t *pos) -{ - mutex_lock(&cache_chain_mutex); - return seq_list_start(&cache_chain, *pos); -} - -static inline int add_caller(unsigned long *n, unsigned long v) -{ - unsigned long *p; - int l; - if (!v) - return 1; - l = n[1]; - p = n + 2; - while (l) { - int i = l/2; - unsigned long *q = p + 2 * i; - if (*q == v) { - q[1]++; - return 1; - } - if (*q > v) { - l = i; - } else { - p = q + 2; - l -= i + 1; - } - } - if (++n[1] == n[0]) - return 0; - memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n)); - p[0] = v; - p[1] = 1; - return 1; -} - -static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s) -{ - void *p; - int i; - if (n[0] == n[1]) - return; - for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) { - if (slab_bufctl(s)[i] != BUFCTL_ACTIVE) - continue; - if (!add_caller(n, (unsigned long)*dbg_userword(c, p))) - return; - } -} - -static void show_symbol(struct seq_file *m, unsigned long address) -{ -#ifdef CONFIG_KALLSYMS - unsigned long offset, size; - char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN]; - - if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) { - seq_printf(m, "%s+%#lx/%#lx", name, offset, size); - if (modname[0]) - seq_printf(m, " [%s]", modname); - return; - } -#endif - seq_printf(m, "%p", (void *)address); -} - -static int leaks_show(struct seq_file *m, void *p) -{ - struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next); - struct slab *slabp; - struct kmem_list3 *l3; - const char *name; - unsigned long *n = m->private; - int node; - int i; - - if (!(cachep->flags & SLAB_STORE_USER)) - return 0; - if (!(cachep->flags & SLAB_RED_ZONE)) - return 0; - - /* OK, we can do it */ - - n[1] = 0; - - for_each_online_node(node) { - l3 = cachep->nodelists[node]; - if (!l3) - continue; - - check_irq_on(); - spin_lock_irq(&l3->list_lock); - - list_for_each_entry(slabp, &l3->slabs_full, list) - handle_slab(n, cachep, slabp); - list_for_each_entry(slabp, &l3->slabs_partial, list) - handle_slab(n, cachep, slabp); - spin_unlock_irq(&l3->list_lock); - } - name = cachep->name; - if (n[0] == n[1]) { - /* Increase the buffer size */ - mutex_unlock(&cache_chain_mutex); - m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL); - if (!m->private) { - /* Too bad, we are really out */ - m->private = n; - mutex_lock(&cache_chain_mutex); - return -ENOMEM; - } - *(unsigned long *)m->private = n[0] * 2; - kfree(n); - mutex_lock(&cache_chain_mutex); - /* Now make sure this entry will be retried */ - m->count = m->size; - return 0; - } - for (i = 0; i < n[1]; i++) { - seq_printf(m, "%s: %lu ", name, n[2*i+3]); - show_symbol(m, n[2*i+2]); - seq_putc(m, '\n'); - } - - return 0; -} - -const struct seq_operations slabstats_op = { - .start = leaks_start, - .next = s_next, - .stop = s_stop, - .show = leaks_show, -}; -#endif -#endif - -/** - * ksize - get the actual amount of memory allocated for a given object - * @objp: Pointer to the object - * - * kmalloc may internally round up allocations and return more memory - * than requested. ksize() can be used to determine the actual amount of - * memory allocated. The caller may use this additional memory, even though - * a smaller amount of memory was initially specified with the kmalloc call. - * The caller must guarantee that objp points to a valid object previously - * allocated with either kmalloc() or kmem_cache_alloc(). The object - * must not be freed during the duration of the call. - */ -size_t ksize(const void *objp) -{ - BUG_ON(!objp); - if (unlikely(objp == ZERO_SIZE_PTR)) - return 0; - - return obj_size(virt_to_cache(objp)); -}