
2008-03-12

© 2008 SGI
Sunnyvale, California

Christoph Lameter, Ph.D.
Technical Lead, Linux Kernel Software
Silicon Graphics Inc.
clameter@sgi.com

Memory Management under Linux:
Issues in Linux VM development

2

Introduction

Short overview of Linux Memory
Management
Projects that were merged in the last year
Problems with solutions
Unsolved Problems
Future Directions

3

Brief Introduction to Memory Management

Virtual Memory Management
Provide memory to the processes and for the operating
system services
A significant influence on performance.
Includes various forms of synchronization in
Multiprocessor systems

Resource management
Allocate memory so that the processes competing for
memory make the best progress.

Linux challenges
Increasing complexity of the VM as the number of
processors and the memory sizes grow
Management of memory in 4k chunks in a world with
machines that have Gigabytes of memory.

4

Memory Management Components

4k Chunks of Memory
Page allocator
Higher order allocations
Anonymous memory
File backed memory
Swapping
Slab allocator
Device DMA allocator
Page Cache
read() / write()
Mmapped I/O.

Process
Memory

Page
Allocator

PCI
Subsystem

Slab
allocator

Vmalloc

Anonymous
PagesPage Cache

Buffers

Device Drivers
Kernel Core

5

Philosophy of Linux Memory Management

All memory must be put to use. Unused memory is a
waste of memory.
Memory is freed if we find another use for it. It is not
freed without reason.
Memory is managed in “zones”. A zone is a range of
memory suitable for a certain purpose.

Memory suitable for legacy I/O devices
Memory that is easily reclaimable
Memory that requires explicit handling (HIGHMEM)
General memory

NUMA implemented by adding more zones.
A major problem of memory management under
NUMA is selecting the zone from which to get
memory for a process.

6

Projects that were merged

Anti-Fragmentation logic for the page allocator (Mel
Gorman)
Memoryless node support
Device based dirty throttling
SPARSEMEM Virtually mapped memmap
Quicklists
64k support on IA64 and in the ext2/3/4 filesystems.
Cgroups – a framework for resource control.
Support for more processors on x86_64
Reducing per cpu allocation overhead overhead
(support for up to 4k/16k cpus on x86_64)
Reducing stack use for cpumasks
SLUB

7

Device based dirty throttling

Current waste of memory. A device must have
enough pages buffered up to make it work at optimal
speed. Pages should be kept hot
Devices may not run at full speed because dirty pages
may be limited due to another slow device creating
dirty pages
New dirty throttling algorithm calculates the dirty rate
of a process and the write out rate of the device and
then makes the process produce dirty pages at the
rate of disk I/O
More memory available. Higher device speed. Some
report doubling of speed in some situation
Addresses most of our dirty pages issues. Not sure
though if it addresses cases where a node ends up
full of dirty pages

8

Cpuset based dirty throttling

Dirty pages are only limited on the system as a whole
Small cpusets can have all of memory dirty
No memory is reclaimable thus we get an out of
memory errors (and thoughts of adding memory come
up).
Changes the calculation of dirty ratios based on the
number of pages in a cpuset.
Provides an upper limit in addition to the limits
imposed by the device based throttling.

9

SLAB vs. SLUB

Old allocator SLAB
Exponentially increasing memory use the more nodes
and processors.
Per object NUMA control which led to inefficiencies in
the alloc and free handler. Bugs still surface.
No ability to defragment memory

New allocator SLUB:
Memory efficient (->low cache footprint -> more speed)
Speed through uses of atomic operations not queuing
objects
Framework for slab reclaim
Support for higher order allocations to increase speed
Simpler and easy to understand.
cmpxchg_local fastpath that does not require disabling
interrupts. Cycle could is reduced by 30%-60%

10

SLUB issues

Page allocator dependency
Variable order slabs
Tunable slabs
Cmpxchg_local fastpath

30-60% performance increases
Can be used in combination with tunable orders

Slab defragmentation

11

64K page size support

Addresses High TLB fault cost on IA64.
Allows larger file system buffers.
Also scales page allocator.
Increases addressable memory for 3 level page
tables.
Enables very large systems. 64K page size seems to
be a requirement for systems with 2k or 4k processors
and about 1k nodes.

12

Memoryless nodes

Included in 2.6.24.
Per node status information
SLAB issues. Need per node structures for nodes
that have no memory.
Introduction of a node status

Node is possible
Node is online
Node can accept high memory allocations
Node has normal memory
Node has processors

13

Cgroup

SMP mechanism to control memory
Adds a per cgroup LRU which establishes page
ownership to the cgroup.
Potential issue if it is to replace cpusets: No per node
LRUs!
Cpuset/cgroup kill on swap?

14

Virtual Memmap

Some performance improvement vs. DISCONTIG and
regular SPARSEMEM.
Simplifies code in the kernel in general
Allows SPARSEMEM to avoid using page flags for
section Ids.
x86_64 has VMEMMAP as the only memory model.
Discontig / Flatmem removed.
Same is to be done for IA64. Tony Luck indicated that
he wants to do this.
i386: Key problem to freeing page flags here with
NUMAQ. Problem is that SPARSEMEM_STATIC
leaves no available page flags.
Future: Movable 2M pages, fallback to 4K?

15

Problems for which patch sets and solutions exist

Off lining memory and nodes: Memory unplug
Performance and scaling problems because of 4k
page size in large systems or due to page pinning

LRU optimizations (Rik van Riel)
Not scanning pinned, mlocked or anonymous pages
(Rik)
Large Blocksize patchset (64k blocksize)

Too many dirty pages accumulate on some nodes
Cpuset/cgroup based dirty throttling

Swap is not acceptable for HPC applications
Cpuset/cgroup kill on swap (Paul Jackson)

Support for more processors (4k – 16k - 64k)
cpu_alloc
cpumask size reduction work (Mike Travis)

16

Problems with solutions continued

Almost empty slabs can consume lots of memory
Slab defragmentation

Unreliability of higher order allocations
Fallback to order 0 in SLUB
Virtual Compound pages (for stacks etc)

Avoiding cacheline contention in percpu allocation
cpu_alloc

Effective per cpu counter and other operations
cpu_ops

DMA zone problems (OOM issues, NUMA memory
balancing)

DMA Zone allocator (Andi Kleen)
Getting rid of ZONE_DMA(32?)

Lack of page flags (removal of SPARSE_STATIC)

17

Unresolved Problems

Page allocator performance for order 0 pages
Page allocator performance for higher order pages.
Devices or subsystems pinning memory (MMU
notifier, EMM notifier exist but are unable to sleep
without additional modifications).
Support for I/O from vmalloc'ed memory
Removal of SPARSEMEM_STATIC from i386 to free
up page flags.

18

Avoiding scans of pinned pages

Pinned pages are not reclaimable (RDMA, Xpmem
etc)
Too many per node may lead to Out of memory errors
A too large percentage will lead the VM to continually
scan through pages that are not reclaimable
Live locking under load.
Solution is to remove the pages from the reclaim list
and go to other nodes if there is no memory available.
Work in progress by Rik van Riel.

19

Virtually Mapped Compound Pages

Avoids vmalloc. The use of virtually mapped memory
needs page table lookups and 4k ptes. Vmalloc is
only used if there is no contiguous memory available.
Reduces TLB pressure
Allow the use of antifrag measures to speed up the
system.
Allows large stack sizes
Avoids failure on order 1 stack allocations
Provides base for higher order page cache fall back
feature.
Allows to provide fall back for various higher order
allocations in the kernel (as f.e. useful for node plug
in)
Allows reliable use of higher order allocations.

20

Large Buffer / Higher order page cache

Needed for scaling VM and I/O
Avoids the LRU scaling problem
Scales I/O. Reduces scatter / gather list sizes. Linear I/O
for large amount of memory possible.
Potential to make huge page use transparent.
May avoid TLB pressure issues

21

Page allocator

Fastpath is not fast. 8x slower than slab allocator
fastpaths.
May need to assign blocks to various higher orders.
Memory defrag missing. Mel did a draft about a year
ago but so far no demand. More higher order page
cache use may make the defrag logic necessary.
Easily fragments.

22

Patch sequence for Compound page support in
the Page Cache

Page flag
 freeing

Page cache
 functions

Virtual Compound
 Support

VM support for
 compound pages on

 the LRU

Support for
 larger buffers in

 the I/O layer

Support for
 DMA to virtual

 compound pages

23

Pinned pages issues

Driver needs to directly map user space pages for
DMA transfer or other special needs.
VM thinks the pinned pages are only temporarily
unavailable and continues attempts to reclaim
memory.
Works fine for small amount of pinned pages.
The more pages are pinned the more the VM will
uselessly attempt to reclaim memory.
One solution: Take pinned pages off the LRU so that
they are no longer scanned.
The other solution: Send a notification to the device
driver so that the pages are unmapped and memory
can be reclaimed.

24

Conclusion

Questions?

