Cool Hand Linux* Handheld Thermal Extensions

Len Brown

len.brown@intel.com
Intel Open Source Technology Center

Hari Seshadri

harinarayanan.seshadri@intel.com Intel Ultra-Mobile Group

Handheld Thermal Challenges

Handheld != Notebook

- □ Skin temperature is critical
- □ Fan-less
- □Small, limited thermal dissipation
- □non-CPU devices may dominate heat generation

ACPI 3.0 Thermal Model

Thermal relationship table

- □Tells the OS the relative thermal contribution of each device to each thermal zone
- □ Significant system design and validation effort

No plans to implement on Linux

ACPI 2.0 Thermal Model

Thermal zone

- □ Temperature
- □Trip points
 - OCRT Critical Shutdown
 - OHOT Hibernate
 - ○PSV Passive
 - ▶PSL Associated Passive List (of Processors)
 - OACx (multiple) Active
- □TZD Associated Thermal Zone Devices

ACPI Embedded Controller (EC)

Polls inexpensive dumb sensors Tracks trip-point state Sends events to CPU

ACPI is not special, "native" EC can do this too...

Using ACPI for Handheld Thermal Events

Processor Thermal Zone

- □Use existing critical shutdown
- ☐ Use existing passive trip and throttling

Non-processor Thermal Zones

- □Use existing critical shutdown
- □ Report "interesting" temperature change events

Thermal Event Delivery via ACPI

Thermal Event Delivery via Native Driver

Design Decisions

Use low-power EC to poll inexpensive temperature sensors Policy decisions made by user-space

Kernel provides mechanism only

- □ Deliver events to user-space
- □Communicate throttling decisions to native drivers

Software Architecture

Thermal event notification

netlink message from thermal-zone driver to user-space status is also available via sysfs

Proposed Thermal Zone sysfs interface

```
temp1_input, temp1_alarm
□Current temperature [_TMP] (RO)
□ Temperature change occurred (RW)
temp1_crit, temp1_crit_alarm
□ Critical alarm temperature [_CRT] (RO)
□ Critical alarm occurred (RW)
temp1_passive, temp1_passive_alarm
□ Passive alarm temperature [_PSV] (RO)
□ Passive alarm occurred (RW)
<device name1>
□Link to device1 for zone (RO)
```

Throttling sysfs properties

throttling throttling_max

Thermal Policy Control Application

Opens

EC must know granularity for "interesting" temp changes

□ Add API for OS to tell the EC?

Summary

User-space owns policy decisions Kernel acts as communication conduit

- □thermal-driver to user-space
- □user-space to native throttling driver

Simple approach applicable both ACPI and native systems

Thank you! Intel Open Source Technology Center