
Working with HardIRQs:
Life Beyond Static IRQ Assignments

2011-04-12

Renesas Electronics
Paul Mundt

paul.mundt@renesas.com
lethal@linux-sh.org

 Outline

 The Olden Days
 The Problem
 What they all have in common
 Overview of sparseirq
 Overview of genirq changes
 Dynamic IRQs
 Transparent demux - A case study
 Future work
 Questions?

 The Olden Days, abridged for sanity

 NR_IRQS
 Statically sized.

 Assumed linear mapping.

 Assumed fairly constrained number of interrupt sources.

 Flat irq_desc descriptor array bounded by NR_IRQS.
 Many other platform-specific structures end up being equally sized.

 Cascade and demux ranges using arbitrary IRQ assignments.
 Drivers must depend on driver model for unallocated range.

 IRQ range generally relative to a bit position.
 In practice this implies a bias for 16-32 IRQs per range.

 The Olden Days, abridged for sanity

 Architecture workarounds
 Translation layer for exception vector to Linux IRQ mapping.
 Further complicated by per-CPU vector mapping, migration, etc.

 Whimsical upper bounding of NR_IRQS via Kconfig/machine descriptor/etc.
 (alpha, arm, blackfin, <insert random embedded arch here>..)

 Invention of entirely new subystems layered on top of genirq.
 Architecture people like to be different -- Not Invented Here Syndrome.

 Usually abstracted to the point where no arch-specific data exists.

 Propagation of non-portable data structures and APIs.

 No centralized overview of IRQ allocation and mapping.
 Code duplication all over the tree.
 Some implementations less broken than others.

 Unusable in shared drivers.
 Again, falling back on driver model shim.

 The Problem

 Linear IRQ mapping is a terrible fit for vectored CPUs.
 The world is not an i8259 or flat IO-APIC (fortunately!)

 Device support, old and new
 MFDs and SuperIOs

 GPIO Expanders

 PCI-X / PCI Express
 MSI/MSI-X/multi-MSI

 A new world of pain - up to 2048 potential IRQ mappings per controller!

 People keep using SMP for some reason.
 Multiple levels of big IRQ locks.

 CPU hotplug

 IRQ migration (CPU/NUMA node/etc.)

 What they all have in common

 Architectures
 The need to track and manage a centralized IRQ bitmap.

 The need to support an unbounded NR_IRQS.
 Something that can scale not only with architecture configuration, but drivers too.

 Growing and shrinking.

 The ability to define IRQ state.
 IRQ reservations.

 Allocation/freeing/binding/unbinding of IRQs dynamically.

 Provisioning of per-IRQ data.

 Scalable lookups.

 Drivers
 The ability to acquire dynamic IRQs in a portable way.

 Acccess to per-IRQ data and state.
 Ideally without requiring irq_desc awareness.

 Overview of sparseirq

 Introduces an irq_desc as an array of pointers model.
 NR_IRQS becomes run-time selectable.
 Conservative platforms simply wrap their NR_IRQ probe to their machine descriptors.

 Ability to dynamically expand.
 To an extent.

 Node awareness for backing irq_desc at instantiation time.
 Originally GFP_ATOMIC/bootmem backed, now GFP_KERNEL (implied GFP_NOWAIT for early boot).

 irq_descs tracked in centrally-managed radix tree.
 NUMA friendly.
 Lightweight-ish.

 Overview of sparseirq

 Originally very x86-centric, but completely rewritten.
 Now unexpectedly sensible.
 Underwent tglx post-processing.

 Beginning to be used by embedded platforms.
 Originally on SuperH, ARM SH/R-Mobile, now also PowerPC and other ARMs.

 For some of these, it is the only supported IRQ model.

 Originally intended for systems with large NR_CPUS
 Equally suitable for vectored CPUs with sparse IRQ instantiation patterns.

 Overview of genirq changes

 Generalization of sparseirq/arch features
 Big NR_IRQS IRQ bitmap with accessor APIs
 alloc/free/reserve

 Private bitmaps largely killed off from all non-ia64 architectures.

 The complete decoupling of irq_desc/irq_data.
 Systematic overhaul of all in-tree code for irq_data utilization.

 irq_desc size reduction
 possible to bloat NR_IRQS to ridiculous proportions.

 irq_data and status accessor driver APIs.

 IRQ threading

 Dynamic IRQs

 Originally an awkward IO-APIC "inspired" API.
 create_irq()/create_irq_nr()/destroy_irq()

 API inconsistency with regards to signedness.

 Now deprecated.

 Now generically facilitated through the genirq bitmap.
 irq_alloc_desc()/irq_alloc_descs()

 irq_alloc_desc_at()/irq_alloc_desc_from()

 irq_free_desc()/irq_free_descs()

 Reservations of bitmap positions also possible
 irq_reserve_irq()/irq_reserve_irqs()

 Transparent expansion of nr_irqs

 Dynamic IRQs

 Architectural flow
 nr_irqs initially sized.

 CPU registers vector to IRQ mapping for initial bitmap population.
 Representing the list of "possible" hardware IRQs in the global bitmap.

 Any additional CPU reservations.

 Insertion of demux ranges for various irq_chips by SoC code.
 Can be at a fixed location to facilitate compatibility with arbitrary assignments.

 Subsequent IRQ allocations scan for bitmap holes.
 Allows for NR_IRQS compaction
 Only need to encapsulate the highest possible vector.

 Bitmap density increases, allowing for more efficient radix tree utilization.
 And space savings!

 Dynamic IRQs

 Drivers can allocate/free dynamically with a portable API
 Any reverse mapping from the IRQ cookie is pushed down to the architecture

code.

 Archictectures are still free to implement per-CPU vector maps as they see fit.

 irq_chip registration requires no awareness of the backing IRQ
 No need for platform data designation, as one will be dynamically assigned.

 -ENOMEM is a possibility here.

 Potential for creative and perverse utilization patterns!

 Transparent demux - A case study

 An extreme dynamic IRQ utilization example.

 Traditional demux flow
 Chained demux handler checks a cause register
 Iterative looping and kicking of handlers for triggered bits.

 Obviously not very fun

 IRQF_SHARED is an abomination
 often forcing completely logically disconnected drivers to share handler glue due to register layout.

 Transparent demux - A case study

 Transparent demux - giving each bit its own IRQ, because we
can.

 Platform submits bit positions per cause register to split out.
 Tagged and inserted in to the controller’s radix tree for lazy IRQ allocation.

 Subsequent grouped IRQ mapping by way of tagged radix tree gang lookups.

 Once the bitmap is populated, resolve pending allocations.
 Each dynamic IRQ is added to a linked list under the hardware IRQs private data.

 Interrupt core inserts its own chained handler for the hwirq.
 Cause register data encoded under hardware IRQ handler data.

 Original handler data for hardware IRQ inherited by the child.

 Normal generic_handle_irq() dispatch for asserted bits.

 Radix tree tag is dropped and the slot replaced with an IRQ<->handle
translation for subsequent lookup.

 Once resolved, drivers can fetch the dynamically resolved IRQ number and use it as normal.

 No need for IRQF_SHARED.

 Future work

 Killing off NR_IRQS completely?
 Some platforms have special HARDIRQ_BITS constraints
 Effectively neutering the upper bounds.

 Or an asm-generic/ version with a ridiculously high number.
 No need for future ports to concern themselves with these things.

 Generalization of per-controller radix trees?
 Different use cases between the sh and ppc IRQ host radix trees.

 Device tree bindings?

 Questions?

