Working with HardIRQs:
Life Beyond Static IRQ Assignments
2011-04-12

Renesas Electronics
Paul Mundt
paul.mundt@renesas.com
lethal@linux-sh.org




Outline

® The Olden Days
® The Problem

® \What they all have in common

m QOverview of sparseirq

®m Overview of genirg changes

® Dynamic IRQs

® Transparent demux - A case study
® Future work

® Questions?




The Olden Days, abridged for sanity

=NR_IRQS
e Statically sized.
e Assumed linear mapping.
e Assumed fairly constrained number of interrupt sources.

® Flat irg_desc descriptor array bounded by NR_IRQS.

e Many other platform-specific structures end up being equally sized.

m Cascade and demux ranges using arbitrary IRQ assignments.

e Drivers must depend on driver model for unallocated range.
e |IRQ range generally relative to a bit position.

» In practice this implies a bias for 16-32 IRQs per range.




The Olden Days, abridged for sanity

®m Architecture workarounds
e Translation layer for exception vector to Linux IRQ mapping.

» Further complicated by per-CPU vector mapping, migration, etc.

e Whimsical upper bounding of NR_IRQS via Kconfig/machine descriptor/etc.
» (alpha, arm, blackfin, <insert random embedded arch here>..)

e Invention of entirely new subystems layered on top of genirg.

» Architecture people like to be different -- Not Invented Here Syndrome.
» Usually abstracted to the point where no arch-specific data exists.
» Propagation of non-portable data structures and APIs.

= No centralized overview of IRQ allocation and mapping.
e Code duplication all over the tree.

» Some implementations less broken than others.
e Unusable in shared drivers.

» Again, falling back on driver model shim.




The Problem

® Linear IRQ mapping is a terrible fit for vectored CPUs.
e The world is not an 18259 or flat IO-APIC (fortunately!)

® Device support, old and new

e MFDs and SuperlOs
e GPIO Expanders

e PCI-X / PCI Express

» MSI/MSI-X/multi-MSI
» A new world of pain - up to 2048 potential IRQ mappings per controller!

® People keep using SMP for some reason.
e Multiple levels of big IRQ locks.
e CPU hotplug
e IRQ migration (CPU/NUMA node/etc.)




What they all have iIn common

m Architectures
e The need to track and manage a centralized IRQ bitmap.
e The need to support an unbounded NR_IRQS.

» Something that can scale not only with architecture configuration, but drivers too.
» Growing and shrinking.

e The ability to define IRQ state.

» IRQ reservations.

e Allocation/freeing/binding/unbinding of IRQs dynamically.
e Provisioning of per-IRQ data.
e Scalable lookups.

®m Drivers

e The ability to acquire dynamic IRQs in a portable way.
e Acccess to per-IRQ data and state.

» Ideally without requiring irq_desc awareness.




Overview of sparseirq

® Introduces an irqg_desc as an array of pointers model.
e NR_IRQS becomes run-time selectable.

» Conservative platforms simply wrap their NR_IRQ probe to their machine descriptors.
e Ability to dynamically expand.
» To an extent.

e Node awareness for backing irq_desc at instantiation time.
» Originally GFP_ATOMIC/bootmem backed, now GFP_KERNEL (implied GFP_NOWAIT for early boot).

® irg_descs tracked in centrally-managed radix tree.
= NUMA friendly.
m Lightweight-ish.




Overview of sparseirq

® Originally very x86-centric, but completely rewritten.
e Now unexpectedly sensible.

» Underwent tglx post-processing.
e Beginning to be used by embedded platforms.

» Originally on SuperH, ARM SH/R-Mobile, now also PowerPC and other ARMS.
» For some of these, it is the only supported IRQ model.

m Originally intended for systems with large NR_CPUS

e Equally suitable for vectored CPUs with sparse IRQ instantiation patterns.




Overview of genirg changes

m Generalization of sparseirg/arch features
e Big NR_IRQS IRQ bitmap with accessor APIs

» alloc/free/reserve
» Private bitmaps largely killed off from all non-ia64 architectures.

® The complete decoupling of irq_desc/irq_data.

e Systematic overhaul of all in-tree code for irq_data utilization.
e irg_desc size reduction

» possible to bloat NR_IRQS to ridiculous proportions.
e irg_data and status accessor driver APIs.

® |IRQ threading




Dynamic IRQs

® Originally an awkward 10-APIC "inspired" API.
e create_irg()/create_irg_nr()/destroy irq()
e API inconsistency with regards to signedness.
e Now deprecated.

® Now generically facilitated through the genirg bitmap.

e irg_alloc_desc()/irg_alloc_descs()
e irg_alloc_desc_at()/irg_alloc_desc_from()
e irg_free desc()/irg_free descs()

® Reservations of bitmap positions also possible
e irg_reserve_irg()/irg_reserve_irgs()

® Transparent expansion of nr_irgs




Dynamic IRQs

® Architectural flow
e Nr_irgs initially sized.
e CPU registers vector to IRQ mapping for initial bitmap population.

» Representing the list of "possible" hardware IRQs in the global bitmap.
e Any additional CPU reservations.

e Insertion of demux ranges for various irq_chips by SoC code.

» Can be at a fixed location to facilitate compatibility with arbitrary assignments.

m Subsequent IRQ allocations scan for bitmap holes.
e Allows for NR_IRQS compaction

» Only need to encapsulate the highest possible vector.
e Bitmap density increases, allowing for more efficient radix tree utilization.

» And space savings!




Dynamic IRQs

® Drivers can allocate/free dynamically with a portable API

e Any reverse mapping from the IRQ cookie is pushed down to the architecture
code.

» Archictectures are still free to implement per-CPU vector maps as they see fit.

e irg_chip registration requires no awareness of the backing IRQ

» No need for platform data designation, as one will be dynamically assigned.
» -ENOMEM is a possibility here.

m Potential for creative and perverse utilization patterns!




Transparent demux - A case study

® An extreme dynamic IRQ utilization example.

= Traditional demux flow
e Chained demux handler checks a cause register

» Iterative looping and kicking of handlers for triggered bits.

e Obviously not very fun
e IRQF_SHARED is an abomination

» often forcing completely logically disconnected drivers to share handler glue due to register layout.




Transparent demux - A case study

® Transparent demux - giving each bit its own IRQ, because we
can.

e Platform submits bit positions per cause register to split out.

» Tagged and inserted in to the controller’s radix tree for lazy IRQ allocation.
» Subsequent grouped IRQ mapping by way of tagged radix tree gang lookups.

e Once the bitmap is populated, resolve pending allocations.
» Each dynamic IRQ is added to a linked list under the hardware IRQs private data.
e Interrupt core inserts its own chained handler for the hwirg.

» Cause register data encoded under hardware IRQ handler data.
» Original handler data for hardware IRQ inherited by the child.
» Normal generic_handle_irq() dispatch for asserted bits.

e Radix tree tag is dropped and the slot replaced with an IRQ<->handle
translation for subsequent lookup.

» Once resolved, drivers can fetch the dynamically resolved IRQ number and use it as normal.

e No need for IRQF_SHARED.




Future work

m Killing off NR_IRQS completely?

e Some platforms have special HARDIRQ BITS constraints
» Effectively neutering the upper bounds.
e Or an asm-generic/ version with a ridiculously high number.

» No need for future ports to concern themselves with these things.

m Generalization of per-controller radix trees?
e Different use cases between the sh and ppc IRQ host radix trees.

® Device tree bindings?




Questions?




