
Asymmetric NUMA:

Multiple-memory management for the rest of us.

Paul Mundt
Renesas Technology

2-6-2 Otemachi, Chiyoda-ku, Tokyo, 100-0004
paul.mundt@renesas.com

October 16, 2007

Abstract

Embedded processors have long shipped with small blocks of on-chip memory for fine-tuned and
hand-optimized applications. With the move towards smaller processes, these blocks are becoming both
increasingly larger in capacity (128k, 256k, 512k, etc.) and increasingly underutilized. Static utilization
has been the common approach for handling these blocks, but this is highly inflexible, does not lend itself
to kernel/application transparency, and largely side-steps the existing VM infrastructure.

With the growing trend of multi-core CMPs in the embedded space, complex multiple-memory hi-
erarchies are becoming common place. In these cases, page locality, worst-case allowable latency, and
the effects on caching behaviour can make or break an application. This paper discusses the existing,
on-going and future work for generalizing NUMA support in the kernel. Management of small asymmetric
nodes in both UP and SMP configurations are discussed, as well as the impact this has for memory-aware
applications aimed at modern embedded CPUs.

1 Introduction

Non-Uniform Memory Access (NUMA) has tradi-
tionally been a characteristic of large-scale systems,
employing both many different memories and many
CPUs. A NUMA system is comprised of logical
“nodes”, with each node typically containing both
memory and CPUs, generally in symmetric config-
urations. Additionally, access times to memory on
different nodes typically varies, often due to physi-
cal location, interconnect latency, and so on. This
characteristic of varying access cost is defined as the
node “distance”, and is a fundamental aspect of the
NUMA topology.

More recently, nodes consisting of only mem-
ory or only CPUs have started to appear, demon-
strating many of the same characteristics as embed-
ded systems with multiple memories, and furthering
the need to re-evaluate node symmetry assumptions
within the kernel.

1.1 Memory models

The kernel supports many different memory models
depending on the architecture. Conventional embed-
ded systems with only one range of physically con-
tiguous memory and consistent access times typically
use the “flatmem” memory model, resulting in the
least amount of overhead1. NUMA requires the use
of either the “discontig” memory model (now ob-
soleted) or the newer “sparsemem” memory model,
the latter being the only one capable of more es-
oteric things, such as memory hot-add. It should
be noted that while NUMA depends on one of these
models, the models themselves do not necessarily im-
ply NUMA characteristics.

1.2 Memory policies

Memory policies are the kernel’s way of determining
which node (or nodes, via a node list) to allocate
memory from. NUMA-aware applications can define

1While flatmem results in the lowest amount of overhead of any of the memory models, sparsemem vmemmap is an alternate
low-overhead solution for the sparsemem model, it is slowly being adopted by sparsemem platforms for mapping the mem map
with large TLBs.

1



their own memory policy by using Andi Kleen’s lib-
numa[1] and its corresponding system calls, or by us-
ing cpusets[2]. Additionally, applications that only
wish to have certain data backed by specific nodes
can use tmpfs[3] mounted with a specific memory
policy.

Several different memory policies exist, these in-
clude:

• MPOL DEFAULT - System default policy,
using node-local page placement.

• MPOL BIND - Allocations restricted to a
node list, error case if allocation can not be
met by the specified nodes.

• MPOL INTERLEAVE - Spread allocations
evenly across a node list.

• MPOL PREFERRED - Prefer allocations
from specified node list, fall back on other
nodes if allocation can not be satisfied by the
specified nodes.

This only aims to be a rough overview of the type of
capabilities available to NUMA-aware applications,
details on the default system-wide policies are cov-
ered in more detail later. For more specific infor-
mation on individual policies, it is recommended to
consult the libnuma documentation, particularly the
mbind() man page.

2 SRAM

Embedded CPUs are more regularly containing
larger blocks of on-chip SRAM. As silicon processes
get smaller, on-chip SRAM capacities grow. What
used to be a 4kB block of scratch space for high-
speed buffers in fine-tuned and extensively profiled
applications has turned in to a 128kB block of largely
under-utilized memory. As these blocks grow expo-
nentially in size, static instrumentation by applica-
tions remains unchanged.

One other item that is often overlooked are the
caching implications for SRAM-backed allocations.
While special placement of pages for a specific work-
load are crucial for cutting down on cacheline bounc-
ing and other common afflictions, on-chip SRAM
often has the characteristic of bypassing the cache
controller completely. This not only allows for a
larger working set to be and remain D-cache resident
while doing meaningful work in SRAM, it also re-
duces pressure on the snoop controller, subsequently
reducing contention both on the CPU interconnect
and the system bus.

2.1 Existing Management Schemes

Schemes to manage this type of memory have been
both numerous, and creative. Current management
approaches typically do one or more of the following:

• Special device node, application mmap()’s
most of the block

• Home-grown allocator

• Special system calls

• Some sort of horrible sysfs thing

• Having Kconfig select individual functions to
place in a special linker section (!)

Additionally, each one of these approaches generally
expects userspace or the kernel to be using this area
exclusively. For those implementations that attempt
to support both, static utilization is the norm, with
only elaborate home-grown allocators even attempt-
ing to support dynamic allocations.

While this approach may have worked for small
individual blocks in the past, it is not a scalable solu-
tion. With the gradual shift to SMP multi-cores (and
each core containing local memory), these existing
approaches need to be continually reworked, partic-
ularly as individual cores start utilizing CPU-local
allocations for per-CPU data while still attempting
to get reasonable general-purpose utilization out of
the block. As a result of this, application porta-
bility is virtually non-existent, and likewise, needs
to be continually reworked for even the most minor
changes in utilization.

2.2 Why NUMA?

“... superh is starting to use NUMA
now, due to varying access times of vari-
ous sorts of memory, and one can envis-
age other embedded setups doing that.”
- Andrew Morton, on linux-mm.

While NUMA might seem like an unusual match for
embedded CPUs, the different costs of access (both
in terms of access time and caching behaviour) fit the
memory distance model quite well. Memory poli-
cies are also a well-established interface for appli-
cation developers and the kernel alike, which helps
to avoid architecture-specific implementation diver-
gence. Additionally, reinventing the wheel is rarely
a good idea in software development, particularly
when the new wheel lacks functionality compared to
the existing one, looks completely different from all
of the other wheels, and needs to be re-aligned every
time you want to use it.

2



3 Kernel Semantics

With the traditional node split being symmetric, the
kernel has a strong preference for trying to spread
allocations evenly across online nodes at system ini-
tialization time, rather than simply consuming the
first node’s memory. While for some nodes (partic-
ularly those with large amounts of memory) node-
local page placement is a both a clear performance
win and strongly desired behaviour, smaller nodes do
not desire such behaviour implicitly. This results in a
few different areas that require re-eximaniation and
extending beyond the system defaults. The primary
items in this area are:

• System initialization memory policy.

• System-wide default memory policy.

• SLAB/SLOB/SLUB allocators.

These items are further discussed individually.

3.1 System initialization

At system initialization time allocations are spread
across a specific node map, using an interleave policy.
In older kernels mm/mempolicy.c:numa policy init()
was simply a reference to the online node map:

void init numa policy init(void)

{
...

/* Set interleaving policy for system init. This way not all

the data structures allocated at system boot end up in node zero. */

if (do set mempolicy(MPOL INTERLEAVE, &node online map))

printk("numa policy init: interleaving failed\n");
}

This had the side-effect of spreading allocations to
every node in the system, regardless of size. Sub-
sequently the SLAB and kernel data structure allo-
cations would consume small nodes (up to 1MB) in
their entirety, simply with basic accounting, and be-
fore userspace or kernel drivers could access any of
the memory. Worse still, all of the small node’s mem-
ory would be consumed by SLAB caches, which are
generally not of any interest to small nodes specifi-
cally.

In order to solve this particular problem, a new
node-size heuristic was added to numa policy init(),
forbidding the inclusion of nodes smaller than 16MB
in the node interleave map used for system initial-
ization. In the event that all nodes are smaller than
that, as may be the case with tiny systems or NUMA
emulation, the largest available node is used as a fall-
back. This is visible in the refactored code, which is
now the kernel default, and which has no functional
differences for larger symmetric configurations:

void init numa policy init(void)

{
nodemask t interleave nodes;

unsigned long largest = 0;

int nid, prefer = 0;

...

/*

* Set interleaving policy for system init. Interleaving is only

* enabled across suitably sized nodes (default is >= 16MB), or

* fall back to the largest node if they’re all smaller.

*/

nodes clear(interleave nodes);

for each online node(nid) {
unsigned long total pages = node present pages(nid);

/* Preserve the largest node */

if (largest < total pages) {
largest = total pages;

prefer = nid;

}
/* Interleave this node? */

if ((total pages << PAGE SHIFT) >= (16 << 20))

node set(nid, interleave nodes);

}
/* All too small, use the largest */

if (unlikely(nodes empty(interleave nodes)))

node set(prefer, interleave nodes);

if (do set mempolicy(MPOL INTERLEAVE, &interleave nodes))

printk("numa policy init: interleaving failed\n");
}

While the 16MB cut-off works well in practice, it is a
stop-gap solution that will likely be refactored using
the new node states in later kernels, subsequently en-
abling memoryless nodes to customize the interleave
nodemask in the same path.

3.2 Default memory policy

The system-wide default memory policy is to pre-
fer node-local placement. This can be overridden by
applictions that set an explicit policy for a memory
range, file systems with an explicit policy, or by using
cpusets.

Additionally, to best exploit the linear scanning
and node-placement heuristics throughout the ker-
nel, it is recommended that all systems place sys-
tem memory in node zero when using asymmetric
configurations! This is especially true on UP con-
figurations, where numa node id() (as used by the
page allocator for default page placement when no
node id is explicitly provided), deriving an index
from smp processor id(), will always equate to 0.

3.3 SLAB allocators

Each of the SLAB allocators contains special hooks
for NUMA support, both in terms of API exten-
sion, and indirectly following the system-wide de-
fault memory policy by way of the page alloca-
tor. The basic in-kernel NUMA APIs focus around
kmalloc() and kmem cache create() variants, these
are kmalloc node() and kmem cache create node()
respectively. Each one of these variants takes an ex-
plicit node id to perform the allocation on, a lack of
a node specifier will prefer the current node (or node
zero in UP configurations).

Optionally, a GFP flag (GFP THISNODE) also
exists for node-local placement when working with
page allocator functions that take a gfp t directly.

3



3.3.1 SLAB

With SLAB being gradually moved off of in newer
kernels, the particulars of SLAB and NUMA inter-
action are not discussed in this paper.

3.3.2 SLUB

Basic support for asymmetric configurations is pos-
sible utilizing the existing heuristics, and additional
patches[4] exist to keep all slab caches off of special
nodes. However, SLUB still ends up taking quite a
bit of space on small nodes for basic accounting, mak-
ing this only an attractive option for larger nodes, or
configurations where a node will not be used for any
kernel allocations and can therefore be excluded from
the node map.

Without patches on a 128kB node:

/ # cat /sys/devices/system/node/node1/meminfo
Node 1 MemTotal: 128 kB
Node 1 MemFree: 64 kB
Node 1 MemUsed: 64 kB
Node 1 Active: 0 kB
Node 1 Inactive: 0 kB
Node 1 Dirty: 0 kB
Node 1 Writeback: 0 kB
Node 1 FilePages: 0 kB
Node 1 Mapped: 0 kB
Node 1 AnonPages: 0 kB
Node 1 PageTables: 0 kB
Node 1 NFS Unstable: 0 kB
Node 1 Bounce: 0 kB
Node 1 Slab: 8 kB
Node 1 SReclaimable: 0 kB
Node 1 SUnreclaim: 8 kB
Node 1 HugePages Total: 0
Node 1 HugePages Free: 0

roughly half of the node is available, with SLUB only
utilizing 2 pages directly. Patching SLUB and ex-
cluding the small node from the nodes which SLUB
touches results in:

/ # cat /sys/devices/system/node/node1/meminfo
Node 1 MemTotal: 128 kB
Node 1 MemFree: 72 kB
Node 1 MemUsed: 56 kB
Node 1 Active: 0 kB
Node 1 Inactive: 0 kB
Node 1 Dirty: 0 kB
Node 1 Writeback: 0 kB
Node 1 FilePages: 0 kB
Node 1 Mapped: 0 kB
Node 1 AnonPages: 0 kB
Node 1 PageTables: 0 kB
Node 1 NFS Unstable: 0 kB
Node 1 Bounce: 0 kB
Node 1 Slab: 0 kB
Node 1 SReclaimable: 0 kB
Node 1 SUnreclaim: 0 kB
Node 1 HugePages Total: 0
Node 1 HugePages Free: 0

This works out to roughly the amount of space that
is consumed by the node-local pgdat and pages for
the bootmem map. However, this approach forbids
SLUB from touching the node completely, meaning
that kernel allocations will also be unspported. For
this reason it is recommended to use SLOB instead.

3.3.3 SLOB

SLOB was lacking in several areas, namely a lack
of both sparsemem and NUMA support, though was
otherwise a much better fit for the problem space. As
of 2.6.23, SLOB supports both of these, and is the
recommended allocator for embedded systems seek-
ing an asymmetric NUMA configuration. SLOB also
results in the smallest amount of per-node overhead
(equal to that of SLUB with patching and without
the need for node list exclusion), making this the
best fit for tiny nodes.

The NUMA support in SLOB is however not
without its drawbacks, as noted in the source:

NUMA support in SLOB is fairly simplis-
tic, pushing most of the real logic down to
the page allocator, and simply doing the
node accounting on the upper levels. In
the event that a node id is explicitly pro-
vided, alloc pages node() with the speci-
fied node id is used instead. The common
case (or when the node id isn’t explic-
itly provided) will default to the current
node, as per numa node id().

Node aware pages are still inserted in to
the global freelist, and these are scanned
for by matching against the node id en-
coded in the page flags. As a result, block
allocations that can be satisfied from the
freelist will only be done so on pages re-
siding on the same node, in order to pre-
vent random node placement.

in practice placement on a global freelist is not a sig-
nificant performance problem with small nodes, but
is still a common contention point on SMP systems,
due to the CPUs contending for the single spinlock
protecting the freelist. A large number of partial free
pages will also result in additional overhead when lin-
early scanning for available pages on a specific node.

While this is something that is fairly easily cor-
rected, it is not something that has occured yet, so
this is something that will have to be taken in to con-
sideration when choosing between available SLAB al-
locators.

4 Working with Memory

While applications have many different ways to get
at memory from specific allocations, it should be
noted that this type of memory is usually a scarce
resource, which should only be used sparingly by
carefully profiled applications. These memories are
generally too small for the system to attempt to au-
tomatically balance workloads relative to CPU dis-

4



tance, as is usually done on symmetric configura-
tions.

Applications mixing and matching various types
of memory also need to take special care to ob-
serve access patterns, particularly to avoid situations
where cachelines are bounced between CPUs or rou-
tinely refilled from and written back to memory with
differing node distance.

On SMP systems, CPU placement must also be
considered, as a page with CPU locality will by def-
inition have a shorter distance in terms of latency
than memory on an alternate CPU, where the ac-
cess first has to contend on the CPU interconnect.
For this reason, task-specific cpumasks derived from
a maximum-allowable latency should also be consid-
ered when deploying NUMA-aware applications.

5 Future work

cpusets currently has some limitations in that it de-
pends on SMP due to its utilization of scheduler do-
mains, this is likely to be resolved in the near future.
Many nodes will be too small to fully bind a task to
using a self-contained cpuset, making sporadic lib-
numa control and tmpfs-backed data the only way
forward for applications.

In addition to that, page migration is of limited
use in these small asymmetric configurations. While
tasks can isolate themselves to a specific range of
memories, application pages alone may quickly OOM
a small node when the pages are lazily migrated from
a larger node, especially if the pressure on the tar-
get node is increased before the migration occurs.
For this reason, page migration should only be used
carefully between suitably sized nodes, or disabled
completely.

Memory policies are a target for rework, includ-
ing being made more fine-grained, something of ben-
efit to applications wanting to use allocations bound
to several different nodes without requiring a sepa-
rate tmpfs mount for each different policy.

SLOB scalability is another target for future
work, though the NUMA scalability work is some-
thing trivially modelled on top of SMP scalability
work. This primarily involves the removal of the sin-
gle freelist and its corresponding lock, splitting it
out per-CPU and per-node, in order to remove the
remaining contention points, as well as greatly reduc-
ing the additional overhead in linear scanning from
list bloat.

6 Conclusions

While NUMA is a good fit for managing memories
with differing costs, it does not come without a size

cost of its own. Both a pgdat and a bootmem map
are usually placed at the beginning of each node in
order for the kernel to manage it, for some nodes
(< 128kB in size) this amount of overhead likely
outweighs any benefits to be derived from dynamic
utilization. However, this is an area where more im-
provement can be made, and it is expected that even
smaller nodes will be easily adapted in to this model
with minimal accounting overhead.

While a node could place each of these on node
zero to reduce node-local overhead, this would sig-
nificantly reduce any performance benefit, as slower
memory would have to be accessed in order to deref-
erence a struct page before access to faster memory
can be made (also creating an additional contention
point on SMP)! A node-local pgdat could be main-
tained while relocating the bootmem map to node
zero in order to reduce overhead down to a single
page frame or less (depending on whether the early
allocator does pfn rounding for the pgdat allocation
or not), this is not something that has been experi-
mented with at the time of this writing.

7 Availability

With the exception of the future work items, all of
the changes discussed in this paper were merged dur-
ing the 2.6.23 merge window, after having been in
-mm for some time. They have been part of all of
the 2.6.23-rc releases since then. There are presently
no outstanding patches.

Acknowledgements

The author would like to thank Christoph Lameter,
Matt Mackall, and Nick Piggin for all of the patient
patch review, feedback, and most importantly, exist-
ing infrastructure!

References

[1] Andi Kleen’s libnuma,
ftp: // ftp. suse. com/ pub/ people/ ak/

numa/

[2] Documentation/cpusets.txt

[3] Documentation/filesystems/tmpfs.txt

[4] SLUB node exclusion patches,
http://marc.info/?l=linux-mm&m=
118127688911359&w=2

5


