
Introduction
Build Tools

Code Generation
Execution

Debugging
Conclusion

Cross Development for the CoCo

John W. Linville

18th Annual “Last” Chicago CoCoFEST!

28-29 March 2009

John W. Linville Cross Development for the CoCo



Introduction
Build Tools

Code Generation
Execution

Debugging
Conclusion

Who am I?
Why is this interesting?
What is this about?

Who am I?

John W. Linville Cross Development for the CoCo



Introduction
Build Tools

Code Generation
Execution

Debugging
Conclusion

Who am I?
Why is this interesting?
What is this about?

Why is this interesting?

Why use a modern workstation to develop CoCo software?

Enjoy modern creature comforts

Spend less time dealing with vintage problems

Enable use of modern software engineering practices

John W. Linville Cross Development for the CoCo



Introduction
Build Tools

Code Generation
Execution

Debugging
Conclusion

Who am I?
Why is this interesting?
What is this about?

What is this about?

Making the most of modern tools!

Source composition and management

Build management

Object code generation

Target communication

Binary execution

Debugging

John W. Linville Cross Development for the CoCo



Introduction
Build Tools

Code Generation
Execution

Debugging
Conclusion

Source Composition
Revision Control
Build Management
ToolShed

Editing

Use a modern (or at least familiar) editor!

Simplest form of cross development

Use a “standard” keyboard

Type faster
Make less mistakes

Even works with BASIC!

John W. Linville Cross Development for the CoCo



Introduction
Build Tools

Code Generation
Execution

Debugging
Conclusion

Source Composition
Revision Control
Build Management
ToolShed

Code Generators

Use tools to write source code for you...

Take the drudgery out of data translation

Avoid error prone encoding

Reduce reluctance for code/data changes

John W. Linville Cross Development for the CoCo



Introduction
Build Tools

Code Generation
Execution

Debugging
Conclusion

Source Composition
Revision Control
Build Management
ToolShed

Revision Control

Let the computer track source code changes!

Revision control is Software Engineering 101

Does the CoCo even have this?

Even if it does, modern tools are much better

John W. Linville Cross Development for the CoCo



Introduction
Build Tools

Code Generation
Execution

Debugging
Conclusion

Source Composition
Revision Control
Build Management
ToolShed

Build Object Code

Let the computer manage your build!

Build just what you need

Build everything you need

Build it the same way every time

John W. Linville Cross Development for the CoCo



Introduction
Build Tools

Code Generation
Execution

Debugging
Conclusion

Source Composition
Revision Control
Build Management
ToolShed

Build Other Bits Too

Don’t just build code...

ROM/Disk/Cassette images

Graphics or other data files

Documentation

Doxygen, javadoc, etc.
Presentation binaries (e.g. PDF)

John W. Linville Cross Development for the CoCo



Introduction
Build Tools

Code Generation
Execution

Debugging
Conclusion

Source Composition
Revision Control
Build Management
ToolShed

Scripted Execution

Build results can drive other events

Session initialization

Automated testing

John W. Linville Cross Development for the CoCo



Introduction
Build Tools

Code Generation
Execution

Debugging
Conclusion

Source Composition
Revision Control
Build Management
ToolShed

ToolShed

ToolShed provides several build-related tools

Assembler, linker, rdump

Filesystem manipulation

Open source, CoCo community

John W. Linville Cross Development for the CoCo



Introduction
Build Tools

Code Generation
Execution

Debugging
Conclusion

Operating Environments
Languages
Assemblers
Compilers

Choosing Operating Environments

Operating environment influences choice of tools and options for
execution and debugging

Capabilities, users, developer skills

Objects formats, coding requirements, etc.

Available libraries

John W. Linville Cross Development for the CoCo



Introduction
Build Tools

Code Generation
Execution

Debugging
Conclusion

Operating Environments
Languages
Assemblers
Compilers

Available Operating Environments

A plethora of choices are available!

Cassette, DECB, ROM pak

Replacement DOS, bare metal

Color DOS, FLEX, OS-9

Others?

John W. Linville Cross Development for the CoCo



Introduction
Build Tools

Code Generation
Execution

Debugging
Conclusion

Operating Environments
Languages
Assemblers
Compilers

Languages

Language choice influences tool choices

Assembly

Wide variety of assemblers
Various pseudo-ops, output formats, etc.

C

Microware
Dunfield
gcc6809
Small C, etc.

John W. Linville Cross Development for the CoCo



Introduction
Build Tools

Code Generation
Execution

Debugging
Conclusion

Operating Environments
Languages
Assemblers
Compilers

Other Languages

Assembly and C are not the only options...

BASIC

CoCo ROM
Ragin’ BASIC

Pascal

Forth

Java

Etc...

John W. Linville Cross Development for the CoCo



Introduction
Build Tools

Code Generation
Execution

Debugging
Conclusion

Operating Environments
Languages
Assemblers
Compilers

Assemblers

Assembly language is always available, but assemblers vary...

Syntax quirks (e.g. FCS vs. FCCZ)

Macro languages

OS support

Output formats

Reporting capabilities

Most assembler problems can be worked-around, so pick one that
you like...

John W. Linville Cross Development for the CoCo



Introduction
Build Tools

Code Generation
Execution

Debugging
Conclusion

Operating Environments
Languages
Assemblers
Compilers

Compilers

Many compilers are at least somewhat retargetable

6809 code generation

Startup code

Library support

Operating environment requirements

John W. Linville Cross Development for the CoCo



Introduction
Build Tools

Code Generation
Execution

Debugging
Conclusion

Physical Machine
Emulation
Hybrid Setup

Physical Machine

Obvious choice, but...

Painful to transfer code

Slower to setup/recover

Possible to damage hardware, ruin disks, etc.

John W. Linville Cross Development for the CoCo



Introduction
Build Tools

Code Generation
Execution

Debugging
Conclusion

Physical Machine
Emulation
Hybrid Setup

Emulation

Emulation is a good alternative, but not perfect!

Code may not run on real hardware

Looks good on LCD, not too good on CM-8

Project may require un-emulated hardware

John W. Linville Cross Development for the CoCo



Introduction
Build Tools

Code Generation
Execution

Debugging
Conclusion

Physical Machine
Emulation
Hybrid Setup

Hybrid Setup

Possible best of both worlds?

DriverWire and/or CoCoNet

Cassette emulation

ROM emulation

DLOAD?

John W. Linville Cross Development for the CoCo



Introduction
Build Tools

Code Generation
Execution

Debugging
Conclusion

Host-based Tools
Native Debuggers
Monitor Programs
Emulated Hardware

Host-based Tools

Lots of debugging is done offline

Hex editor

Disk image tools

Object dump tools

Disassemblers

John W. Linville Cross Development for the CoCo



Introduction
Build Tools

Code Generation
Execution

Debugging
Conclusion

Host-based Tools
Native Debuggers
Monitor Programs
Emulated Hardware

Native Debuggers

Native debuggers are equally useful under emulation

EDTASM+ ZBUG

OS-9 debug

John W. Linville Cross Development for the CoCo



Introduction
Build Tools

Code Generation
Execution

Debugging
Conclusion

Host-based Tools
Native Debuggers
Monitor Programs
Emulated Hardware

Monitor Programs

Monitor programs provide a window into the soul of the machine...

Emulator monitors (Vavasour, others?)

Monitor programs over debug port

Remote debuggers (DriveWire3, NoICE, etc.)

John W. Linville Cross Development for the CoCo



Introduction
Build Tools

Code Generation
Execution

Debugging
Conclusion

Host-based Tools
Native Debuggers
Monitor Programs
Emulated Hardware

Emulated Hardware

Take advantage of open source emulators...

Simulate hardware in development

Add “hardware” that connects to the workstation

John W. Linville Cross Development for the CoCo



Introduction
Build Tools

Code Generation
Execution

Debugging
Conclusion

Let’s get started!
Demonstrations
Questions?
Contact

Let’s get started!

Got a project? Maybe I can help?

Tools

Drivers

????

John W. Linville Cross Development for the CoCo



Introduction
Build Tools

Code Generation
Execution

Debugging
Conclusion

Let’s get started!
Demonstrations
Questions?
Contact

Demonstrations

(Semi-)prepared demonstration points...

Revision control, host-based tools

“Hello, world!” with absolute assemblers

Generate BASIC loaders

Upload code to the CoCo

Debugging with a monitor program

Verifying OS-9 modules

Impromptu demonstrations upon request!

John W. Linville Cross Development for the CoCo



Introduction
Build Tools

Code Generation
Execution

Debugging
Conclusion

Let’s get started!
Demonstrations
Questions?
Contact

Questions?

John W. Linville Cross Development for the CoCo



Introduction
Build Tools

Code Generation
Execution

Debugging
Conclusion

Let’s get started!
Demonstrations
Questions?
Contact

Contact

Feel free to contact me!

Email linville@tuxdriver.com

...@redhat.com

...@gmail.com

...@kernel.org

IRC linville on FreeNode, OFTC, and LinuxNET

Facebook as “John W. Linville”

Slides available:
http://www.kernel.org/pub/linux/kernel/people/linville/cocofest2009/

John W. Linville Cross Development for the CoCo


	Introduction
	Who am I?
	Why is this interesting?
	What is this about?

	Build Tools
	Source Composition
	Revision Control
	Build Management
	ToolShed

	Code Generation
	Operating Environments
	Languages
	Assemblers
	Compilers

	Execution
	Physical Machine
	Emulation
	Hybrid Setup

	Debugging
	Host-based Tools
	Native Debuggers
	Monitor Programs
	Emulated Hardware

	Conclusion
	Let's get started!
	Demonstrations
	Questions?
	Contact


