
A day in the life of a Linux kernel hacker. . .
Why who does what when and how!

John W. Linville
Red Hat, Inc.

linville@redhat.com

Abstract

The Linux kernel is a huge project with contributors
spanning the globe. Its usefulness and other advantages
continue to draw new users on a daily basis. But some
users will discover problems with the code, and others
will eventually find a need to add their own features to
Linux. Whether you are a user in need of support or
a developer trying to enhance the kernel, it is good to
know something about who is in the community and
how they work together.

This topic will introduce the newcomer to some of the
characters in the Linux community and some of the roles
they play. It will highlight some of the tasks Linux hack-
ers perform on a day-to-day basis, and give a general
overview of how work gets done within the community.

1 Introduction

Have you ever wondered how Linux kernel hackers
spend their days? I am sure that many people have a
picture in their mind: a pale-faced, shaggy, sandal-clad
man basking in the glow of his LCD in a corner of his
mother’s basement while C code for drivers, schedulers,
and memory allocators oozes from his fingertips. That
image is, of course, not entirely inaccurate. However,
there is much more to the community than that stereo-
type. Not only is there a wide diversity amongst the
participants, there are far more roles to play than merely
that of sunlight-deprived developer!

1.1 Why is this interesting?

You might ask, “So what?” Many might be satisfied to
use Linux (either directly or indirectly) without know-
ing any details about how it came to be or how it con-
tinues to evolve. But one must realize that the Linux

kernel is a huge software project with literally millions
of lines of code, thousands of adjunct developers, hun-
dreds of regular developers, and dozens of core develop-
ers. The Linux kernel is a study in management of com-
plex projects, and there are many lessons to be drawn
from observing how Linux is developed.

Beyond one’s own intellectual expansion, there are more
practical reasons why one might want to understand how
Linux is developed. A direct user of Linux (or any other
system) is bound to encounter a problem eventually, and
that user will probably want to see that problem fixed.
Also, many systems are now developed using Linux as
a component. Developers working on such systems will
want to understand how the community works, not only
to help themselves get problems fixed, but also to under-
stand how to get their own code incorporated into Linux
in order to reap the benefits of community maintenance.
Finally, one may wish to become an active member of
the Linux community. In fact there are many reasons for
joining the community. These include “scratching your
own itch,” making the world a better place, or simply
building your own public profile.

1.2 What is so different?

Of course, lots of software is developed behind closed
doors in any number of companies around the world.
Surely there are any number of people who know how
to develop software? That is true, but there are some key
differences between those practices and how software is
developed in the open source community. Some impor-
tant differences exist in terms of the role of profit, the
hierarchy of authority, and how technical decisions are
made.

One of the more obvious points about the open source
community is the role of financial profit. Such profit is
not necessarily the main motivator for participation in

1



the community. Many people participate solely as hob-
byists, while others have specific needs and participate
in order to “scratch their own itch.” Still others honestly
believe that they are making the world a better place.
The presence of such players in the community creates
a far different dynamic than one finds in a traditional
closed software shop.

Another poignant difference between traditional soft-
ware development and the open source community is the
lack of central authority figures. Even Linus Torvalds
himself has no inherent authority beyond his own skill
and participation. If Linus were to make irrational de-
cisions or were simply to lose interest in the Linux ker-
nel project, the community would simply reform around
one or more other leaders. The need to recruit and re-
tain contributors through the merit of the leadership is
another key difference between traditional software de-
velopment and the open source community.

A final difference worth noting is the notion of meri-
tocracy. In a traditional software development shop, a
project of any considerable size will quickly be subdi-
vided into component parts and each part will be as-
signed to an individual or team. Those teams will typi-
cally toil in isolation until they have something working,
then they will submit that to the final product with little
or no external review. In the open source community,
open review is part of the process both during develop-
ment and before the final merge. In many cases, alter-
native implementations compete with one another and
the community chooses between them based on tech-
nical merit and individual needs. Such “wasted” effort
would not be tolerated in most traditional software de-
velopment shops, but the open source community is big
enough to afford it and is stronger for it.

1.3 Let’s explore!

Hopefully the point has been made that the open source
community in general and the Linux community in par-
ticular is worth studying. Below is a discussion of what
types of people are involved in that community and what
roles they play. Also discussed are some of the tools
they use and how they spend their time. Finally, some
time is spent discussing the actual processes used for de-
velopment and how they interact with one another. By
the end, the reader should have a good idea of who in
the community does what, when they do it, why they do
so, and how.

2 Why who does what. . .

People from all over the world become involved in the
Linux community for any number of reasons. These
people apply their diversity of talents to a number of dif-
ferent roles within the community, many of which are
not directly related to writing software. A number of
tools facilitate this cooperation. An overview of these
topics will guide the reader’s understanding of the com-
munity.

2.1 Motivations

It is probably impossible to enumerate every possible
motivation for becoming a Linux contributor. Still, most
motivations fall into a few loosely defined categories.
These motivations run the gamut from commercialism
to volunteerism, and span from self-interest to altruism.

The most well-known reason and most commonly cited
one for getting involved with Linux is “scratching an
itch.” Nearly everyone needs software for something
nowadays, and many people and organizations need
software either that is unavailable or that those people
and organizations cannot afford to obtain from a ven-
dor. In many such situations, this software is developed
and deployed internally by those organizations.

The nature of software is such that once it exists, the
cost of duplicating and distributing that software is neg-
ligible. This is especially true when that distribution is
done electronically and done by others at their own ex-
pense. Such distribution also allows those with simi-
lar software needs to find and support each other, shar-
ing resources to develop and improve software for the
widest possible audience. As the audience widens, so
increases the potential benefits of such sharing. Since
the kernel is the central component of a Linux-based
system, “scratch your own itch” contributors are quite
common in the Linux community.

A large number of Linux contributors are working on
commercial software development projects that use the
Linux kernel. Those employed by distribution vendors
such as Red Hat are obvious examples of this. But there
are any number of smaller software vendors develop-
ing embedded systems or other specialized products and
making contributions to the kernel. These contributions
are often small bug fixes or specialized device drivers,

2



but can be more generic components such as filesys-
tems, compression algorithms, networking subsystems,
etc. Just like “scratch your own itch” contributors, com-
mercial developers recognize the value of community
software development and maintenance of kernel com-
ponents.

A few other motivations are commonly found within
the community. Some number of community contribu-
tors make their living doing contract development work.
This typically involves short-term work on behalf of
product-focused companies that need specific features
developed for the Linux kernel. Some other contributors
are fortunate enough to be sponsored to do Linux kernel
work under their own direction due to the good graces of
some company or other benefactor. Finally, some num-
ber of contributors work on Linux because they believe
they are making the world a better place or for some
other similarly altruistic reason.1

2.2 Roles

In a community-based software development project, it
is important to recognize that not everyone is writing
code for the project. While this is certainly an impor-
tant and necessary skill, it is generally insufficient for
a successful project. People are needed to test the soft-
ware and to report bugs, to write and review the code, to
manage the code, and to document and write about the
code. Each of these roles plays an important part within
the community.

2.2.1 Bug Reporter

One of the most important roles in the community is
the bug reporter. While many people will run new ker-
nels and many of those will experience one problem or
another, few will bother to report those problems and
fewer still will not only provide useful information but
also remain engaged long enough to find fixes. Those in-
dividuals are invaluable in the creation and maintenance
of high quality software.

1In any case, the author suspects that the sum of these groups is
dwarfed by the number of commercial and “scratch your own itch”
contributors.

2.2.2 Tester

In a sense, every user is also a tester. But in reality most
users exercise little more than the core functionality of a
given piece of software. True testing requires repetition,
documentation, and skill as well as the dedication to ap-
ply those resources. Testers not only find problems but
also assist in analysis by finding the boundaries of the
problems they identify. Testers are highly valued mem-
bers of the community.

2.2.3 Coder

The coder is the most celebrated member of the commu-
nity. The coder tackles the problem of producing source
code changes to fix a problem or implement a new fea-
ture. Coders provide the raw material for the Linux ker-
nel. Obviously, without coders the project would not
exist.

2.2.4 Reviewer

An often overlooked person in the community is the re-
viewer. When the coder does his job, he posts his prod-
uct (i.e., a patch) to a mailing list. The reviewer eval-
uates the change, comments upon its form and impact,
and often makes suggestions for changes or refinements.
The reviewer has one of the most important roles in en-
suring initial code quality.

2.2.5 Maintainer

The maintainers are the “old men”2 in the commu-
nity. The maintainers are responsible for taking what
the coders produce, deciding when the reviewers have
added enough value, and merging the results into the up-
stream kernel tree. They also communicate with testers,
bug reporters, and others to ensure that code quality is
maintained at a good level and that good processes are
being followed. Maintainers perform a role similar to a
manager or team leader in a traditional software devel-
opment shop.

2Of course, they are not all old and not all men. . .

3



2.2.6 Technical Writer

A technical writer is one who produces documentation
of technical details surrounding the kernel. This pri-
marily includes documenting both those APIs for inter-
nal use within the kernel and those for communicating
with userland programs. Without such documentation,
it would be difficult to sustain the development commu-
nity.

2.2.7 Journalist

An important aspect of maintaining a community is
keeping contributors aware of what else is happening
within that community. The Linux kernel is a huge
project, and it can be difficult to know what new devel-
opments are in progress and what old components are
being revamped or removed. Following all of the rele-
vant mailing lists is a daunting task by itself, much less
if one is trying to write code or run tests. The journal-
ists in the community keep everyone abreast of what is
happening now and what is coming next.

2.3 Tools

It should not be surprising that a software development
community uses a number of software tools to keep it-
self running smoothly. Still, it is worthwhile to enu-
merate some of them and discuss how they are used.
Important tools include both those for communications
and those specific to software development.

2.3.1 Email

Email is the single most important tool within the com-
munity. The Linux kernel community is diverse and
spread across the globe. It is generally difficult to as-
semble people in one place or even to gather for a conve-
niently timed teleconference. Consequently discussions
are held on mailing lists. This has the added benefits of
documenting and archiving such discussions as well as
generally keeping such discussions short and direct.

2.3.2 Bugzilla, etc.

Bugzilla and other bug-tracking tools are often used for
their intended purpose. The kernel has its own Bugzilla

instance,3 but the bug trackers of distributions and other
kernel-related projects are often used as well. Such tools
help to organize bug report information and to segre-
gate one bug’s information from reports of other bugs,
as well as from other discussions that would otherwise
clutter a mailing list.

2.3.3 IRC

IRC is commonly used by active kernel contributors for
real-time communications. Chat bridges the gap be-
tween email and telephony, allowing precise communi-
cations in a timely and direct fashion.

2.3.4 Wikis

A wiki is the documentary analog of open source devel-
opment. As such, it fits nicely with the general mind-
set of the Linux kernel development community. Many
parts of the project use wikis to document designs, user
interfaces, API changes, and other information pertinent
to users and/or other developers.

2.3.5 Code Analyzers

Policing large bodies of code can be daunting, and line-
by-line analysis of code for trivial or subtle coding er-
rors can be tedious and error prone. Fortunately, many
such problems can be identified algorithmically. The
kernel includes checkpatch.pl which can be used
to find many simple problems, especially those relating
to coding style. Tools such as Sparse4 are often used for
deeper code analysis.

2.3.6 Git

No discussion of tools used in the Linux kernel commu-
nity would be complete without mentioning git, the
primary revision control tool used within the commu-
nity. Unlike traditional revision control tools, git uses

3http://bugzilla.kernel.org
4http://www.kernel.org/pub/software/devel/

sparse/

4



a distributed development model. Among other ramifi-
cations, this means that every copy of the git reposi-
tory can operate independently. Further, formerly inde-
pendent repositories can be merged at any time, allow-
ing for development efforts to proceed according to their
own schedules without requiring lots of work to resyn-
chronize with the upstream kernel tree. Git is probably
the single most important tool in use by the community
today.

2.4 Patches

An important point must be made regarding patches. A
patch is a unit of change to source code.5 Typically
patches are sent in email for review and then later ap-
plied to a tree in git to form the basis of future devel-
opment. Patches contain limited context used to iden-
tify affected pieces of source code files. This helps to
make them resilient against unrelated changes in the
same files.

The great thing about a patch is that it focuses attention
just on those pieces of code that are being changed. This
allows for direct review of a proposed change without
lots of effort in locating or identifying that change. The
alternative6 is to pass around changed versions of com-
plete files. These files are awkward to handle and their
use makes identifying changes difficult and error prone.
The use of the simple patch is an elegant enabling tech-
nology for distributed development on a large scale.

3 When and How. . .

Now that we have identified the motivations of the play-
ers, the roles they play, and the tools they use, we should
look at the processes used to coordinate their efforts. We
will discuss how development needs are identified, what
process is used to vet patches, and the route patches fol-
low on their way to the “official” Linux kernel.

5While the word “patch” can connote something shoddy or tem-
porary to a native English speaker, in the context of Linux kernel
development it has no such connotations. Instead, the term patch
derives from the name of the non-interactive editor used to apply the
changes to the source code.

6The author’s experience suggests that this code review alter-
native is used all too often in the traditional software development
world.

3.1 Identify a Need

Perhaps it goes without saying, but the first step in any
development process is to identify a need. In many
cases, the need will originate with a bug report. This
might be in Bugzilla or another bug tracker, or it might
come via email or IRC. In other cases, the need will
derive from an external project requirement such as the
need for a driver for a new device or a new network-
ing subsystem for a certain application. In other cases
the “need” is because some other operating system has
a feature that is deemed desirable for Linux. Finally, in
many cases the development need originates with some-
one saying “wouldn’t it be cool if. . . ?” In any case, once
a need is identified, the next step is to write some code
and post a patch.

3.2 Development Cycle

Many people find the Linux development process to be
daunting. In reality it is quite simple, although person-
alities can make the process a bit humbling. The basic
process begins with creating and posting a patch to an
appropriate mailing list. With any luck this provokes
someone to review the patch and make appropriate com-
ments. Or, reviewers may simply indicate their approval
with an “ACK.”7 In many cases it will be necessary to
make revisions to the patch and post a new version to
the same mailing list. This process should be repeated
until the patch is accepted by the maintainer.

Often new contributors are either intimidated by the
above process or they simply do not believe it to be
the best use of their time. The temptation is to develop
in solitude until the developer is completely confident
in the soundness of a patch. Do not make this mis-
take! Inevitably someone will find legitimate problems
with any significant patch series. Trying to avoid the
review-revise-repost cycle will only waste a developer’s
time and create frustration between the developer and
the community when the patch is finally posted for re-
view.

3.3 Path Through the Trees

The first stop for an accepted patch is in a maintainer’s
tree. A variety of maintainers’ trees exist for subsystems

7ACK is short for acknowledged.

5



like networking and SCSI, features like SELinux and re-
altime, and architectures like ARM, MIPS, SPARC, etc.
Maintainers’ trees are usually limited to usage by inter-
ested parties such as developers and users with specific
needs or interests.

To expand test coverage and community exposure,
other trees aggregate input from the various maintain-
ers’ trees. In the past this role was primarily filled
by Andrew Morton’s -mm tree, but more recently the
linux-next tree has become more popular. The
linux-next tree pulls the current versions of many
(probably most) maintainers’ trees to create a preview
of what will soon be available in the “official” Linux
kernel.

Periodically Linus will pronounce a kernel ready for re-
lease. Prior to that time, maintainers will have been
staging changes for the next Linux release and mak-
ing them available through the linux-next tree. Af-
ter the release, Linus spends two weeks merging the
patches the maintainers have been staging. Between the
end of that period and the next release, only necessary
bug fixes are merged into the “official” tree by Linus.
Any changes that are not necessary bug fixes are again
staged by the maintainers for the following release. This
period lasts several weeks as the kernel is exposed to
more testing and as bugs are uncovered and fixed. After
2–3 months, Linus will pronounce the kernel ready for
another release, and then the cycle begins again.

4 Conclusion

The reader has been provided with an overview of how
the Linux kernel is developed. We have discussed why
the contributors are involved, and what jobs they per-
form. We discussed many of the tools the community
uses to manage itself, and specifically discussed the im-
portance of the patch as a unit of work.

With all that background information, we went on to dis-
cuss the development cycle for the kernel. We touched
on how development needs are identified, and discussed
how patches are proposed, reviewed, and accepted into
the kernel. Finally we discussed the various trees a patch
has to traverse before making its way to Linus.

The author hopes this information has been useful. The
community needs to sustain itself with contributors. A
variety of roles need to be filled—no special training is

required. The author hopes that the reader will be in-
spired to find a way to join us! A well informed and
active community continues to be the force behind the
continued success of Linux and the open source com-
munity in general.

6


