
Scaling the Linux VFS

Nick Piggin
SuSE Labs, Novell Inc.

October 16, 2009

0-0

Outline

I will cover the following areas:

• Introduce each of the scalability bottlenecks

• Describe common operations they protect

• Outline my approach to improving synchronisation

• Report progress, results, problems, future work

1

Goal

• Improve scalability of common vfs operations;

• with minimal impact on single threaded performance;

• and without an overly complex design.

• Single-sb scalability.

2

Scalability basics

• Scalability problem when there is contention for shared

resources.

• Seen in software – eg. locks, where only one code path may

proceed.

• Or hardware – eg. cachelines, where only one CPU may modify

a line.

• Must avoid exclusive locks and writing to shared variables,

• achieved by changing locking techniques and/or data structures.

3

VFS overview

• Virtual FileSystem, or Virtual Filesystem Switch

• Entry point for filesystem operations (eg. syscalls)

• Delegates operations to appropriate mounted filesystems

• Caches things to reduce or eliminate fs responsibility

• Provides a library of functions to be used by fs

4

VFS overview 2

• Every mounted filesystem has a struct super block.

• May be mounted more than once, each mount point has a

struct vfsmount.

• File data is manipulated with struct inode, also a cache.

• Directory entry layout manipulated with struct dentry, also a

cache.

• Complex and inter-related data structures.

5

The major problems

• files lock

• vfsmount lock

• mnt count

• dcache lock

• inode lock

• Several other write-often data (eg. counters)

• d lock on common dentries

6

files lock

• Every open file is put on a per-superblock list.

• Global files lock spinlock protects access to this list.

• Each open(2) and close(2) syscall takes this lock.

• Global limit on open(2) and close(2) scalability.

7

Scaling files lock

• Slowpath reading the list is very rare, fastpath is updates.

• Modifying a single object (the list head) cannot be scalable:

• must reduce number of modifications (eg. batching),

• or split modifications to multiple objects.

• I use per-CPU lists, protected by per-CPU locks.

• Potential cross-CPU file removal issue.

8

vfsmount lock

• Every mounted filesystem

• Largely, protects reading and writing mount hash.

• Path lookup of directory with fs mounted result in a mount

lookup.

• Mount lookup searches the vfsmount hash for given mount

point.

• Mounting, unmounting filesystems modifies the vfsmount hash.

• Global limit on path lookups over mount points.

9

Scaling vfsmount lock

• Fastpath is lookups, slowpaths are updates

• RCU not trivial, we must keep lookups away while unmounting,

• but per-vfsmount lock defeats single-sb scalability,

• and synchronize rcu() is just too slow even for umount.

• Use per-cpu locks again, this time optimised for reading

• “brlock”, readers take a per-cpu lock, writers take all locks

10

mnt count

• A refcount on vfsmount, not quite a simple refcount.

• Used importantly in open(2), close(2), and path walk over

mounts.

• Per-mount limit on open(2) and close(2) scalability.

11

Scaling mnt count

• Fastpath is get/put (increment and decrement-and-test

refcount).

• “put” must check count == 0, making per-CPU counter hard.

• However count == 0 is always false when vfsmount is

attached.

• So only check when not mounted (rare case), otherwise just

decrement.

• Then per-CPU counters can be used, with per-CPU

vfsmount lock.

12

dcache lock

• Most dcache operations require dcache lock.

• Name lookup is an exception, converted to RCU in 2.5.

• dput last reference (common in open(2)/close(2) lifecycle).

• Any namespace modification (file create, delete, rename).

• Any uncached namespace population (uncached path lookup).

• dcache LRU scanning and reclaim.

• Pipe and socket open/close (these create and delete dentries).

13

dcache locking classes

• dcache lock protects several semi-independent cases:

• dcache hash,

• dcache LRU list,

• inode’s dentry alias list,

• dentry’s children list,

• dentry’s parent,

• membership on lists (hash, LRU, parent’s children, etc),

• dentry statistics counters.

14

Scaling dcache lock

• Use per-dentry lock to protect all dentry properties.

• Protect dentry children with d lock too.

• dcache hash, LRU list, inode dentry list protected by new

locking.

• Lock ordering can be difficult, trylock helps.

15

dcache locking classes difficulties

• “Locking classes” are not independent.

1: spin_lock(&dcache_lock);
2: list_add(&dentry->d_lru, &dentry_lru);
3: hlist_add(&dentry->d_hash, &hash_list);
4: spin_unlock(&dcache_lock);

is not the same as

1: spin_lock(&dcache_lru_lock);
2: list_add(&dentry->d_lru, &dentry_lru);
3: spin_unlock(&dcache_lru_lock);
4: spin_lock(&dcache_hash_lock);
5: hlist_add(&dentry->d_hash, &hash_list);
6: spin_unlock(&dcache_hash_lock);

• Multiple locks have ordering constraints. Trylock helps.

16

Scaling dcache lock cont.

• dcache hash locking are per hash bucket.

• inode’s dentry list is locked with the inode’s lock.

• dcache statistics counters are using per-CPU counters.

• dcache LRU list protected with a global lock, could be made

per-zone.

17

Scaling dcache lock cont.

• Reverse path walking (from child to parent)

We have dcache parent− >child lock ordering. Walking the other

way is tough. Finding the path from a dentry to root would

previously take dcache lock to freeze the state of the entire

dcache tree. I use RCU to prevent parent from being freed while

dropping the child’s lock to take the parent lock. Rename lock or

seqlock/retry logic can prevent renames causing our walk to

become incorrect. This is similar to normal RCU lookups.

18

inode lock

• Most inode operations require inode lock.

• Except importantly dentry− >inode lookup (read(2), write(2)

etc.)

• inode lookup (uncached file open, file create, and nfsd)

• inode creation, and inode destruction (create, unlink)

• inode dirtying, writeback, syncing

• inode LRU walking and reclaim

• pipe and socket open/close (these create and delete inodes).

19

inode locking classes

• inode lock protects several semi-independent cases:

• inode hash

• inode LRU list

• inode superblock inodes list

• inode dirty list

• membership on lists (hash, LRU, dirty, etc),

• inode fields (i state)

• iunique

• last ino

• inode counters

20

Scaling inode lock

• Similar to approach to scale dcache lock

• Use per-inode lock to protect all inode properties.

• inode hash, superblock list, LRU, dirty lists protected by new

locking.

• last ino, iunique protected by new locking.

21

Scaling inode lock cont.

• RCU free struct inode to reduce locking, simplify lock order.

• inode hash locks are per hash bucket

• inode hash lookups are lock-free with RCU

• icache LRU list made lazy like dcache

• per-cpu inode superblock lists, per-cpu locking like files lock.

• inode statistics counters are using per-CPU counters.

• per-cpu inode number allocator (Eric Dumazet)

• inode LRU list has global lock, could be made per-zone.

• inode dirty list has a global lock, could be made per-superblock.

22

d lock

• Path lookup looks up each path element in turn, from dcache.

• For each dentry lookup, d lock is taken and refcount is taken.

• These 3 atomic operations per path element are costly.

• Scalability problem for parallel lookup of common path

elements.

• eg. root dentry or cwd dentry can be effectively a global lock.

23

Scaling d lock

• Dcache lookup is already largely RCU.

• Locking and refcounting required for:

• blocking rename during name comparison,

• ensuring persistence of dentry and dentry’s inode.

• inode now RCU freed, rcu read lock ensures inode

persistence.

• seqlock can be used for atomic name comparison versus

rename.

• Difficult cases (eg. fs call required), use old d lock walk.

24

Performance results

• open(2)/close(2) seems perfectly scalable with lock free

lookups.

• creat(2)/unlink(2) is very scalable, in seperate directories.

• Single-threaded performance is worse in some cases, better in

others.

• Other benefits – eg. dentry/inode reclaim global lock.

25

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t o

ps
/s

 p
er

 C
P

U

CPUs used

close(open("path")) on independent files, different cwd

standard
vfs-scale

Plain kernel 450 ops/s per CPU at 64 CPUs

26

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t o

ps
/s

 p
er

 C
P

U

CPUs used

close(open("path")) on independent files, same cwd

standard
vfs-scale

27

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t o

ps
/s

 p
er

 C
P

U

CPUs used

unlink(creat("path")) on independent files, different cwd

standard
vfs-scale

Plain kernel 140 ops/s per CPU at 64 CPUs

28

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t o

ps
/s

 p
er

 C
P

U

CPUs used

unlink(creat("path")) on independent files, same cwd

standard
vfs-scale

vfs patches give lower single-CPU performance

29

 0

 0.5

 1

 1.5

 2

 0 0.1 0.2 0.3 0.4 0.5 0.6

to
ta

l t
im

e,
 lo

w
er

 is
 b

et
te

r
Multi-process close lots of sockets

plain
vfs-scale

30

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 0 0.1 0.2 0.3 0.4 0.5 0.6

M
ax

 jo
bs

/m
in

, h
ig

he
r

is
 b

et
te

r
osdl reaim 7 Peter Chubb workload

plain
vfs-scale

31

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.1 0.2 0.3 0.4 0.5 0.6

T
im

e
(s

),
 lo

w
er

 is
 b

et
te

r
Single-threaded cached git diff

plain
vfs-scale

32

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 0.1 0.2 0.3 0.4 0.5 0.6

T
im

e
(s

),
 lo

w
er

 is
 b

et
te

r
Multi-threaded cached git diff

plain
vfs-scale

33

Current progress

• Very few fundamentally global cachelines remain.

• I’m using tmpfs, ramfs, ext2/3, nfs, nfsd, autofs4.

• Particularly dcache changes not audited in all filesystems.

• Still stamping out bugs, doing basic performance testing.

34

Future work

• Look at single threaded performance, code simplifications

Interesting future possibilities:

• Add more cases that lock free path walk can handle.

• Further improve scalability (eg. LRU lists, inode dirty list).

• This work paves the way for NUMA aware dcache/icache

reclaim.

• Re-evaluate data structures (eg. trees instead of hash for

lookup).

35

Conclusion

• VFS has scalability weak points.

• CPU core and thread count continues to increase.

• So the need to improve scalability is probably inevitable.

• I have developed reasonable ways to improve scalability.

• I am very interested in feedback, testing, alternative ideas.

Thank you

36

