
NUMA replicated pagecache for Linux

Nick Piggin
SuSE Labs

January 27, 2008

0-0

Talk outline

I will cover the following areas:

• Give some NUMA background information

• Introduce some of Linux’s NUMA optimisations

• Show a problem with Linux’s NUMA memory allocation

• Introduce the Linux pagecache

• Show how NUMA replication can be applied to the pagecache

• Outline the design of NUMA replicated pagecache

1

Motivation

Trends show that NUMA is pushing down into commodity systems; also,

Linux is pushing up into larger systems.

Scalability remains important for Linux (and software in general). Scal-

ability is the ability to increase throughput of a workload by increasing

available CPUs in a multiprocessor system.

• AMD brought NUMA to the masses, with the Opteron.

• Intel is going to follow soon.

• SGI systems have 512 NUMA nodes, probably more in future.

• All HP, IBM, etc “enterprise” systems are NUMA.

2

Background

CPU CPU CPU CPU

Mem Cont.

BUS

RAM

Typical SMP

• All CPUs sharing a bus to communicate.

• Typically one memory controller.

• Bus and memory can bottleneck as CPUs are added.

3

Background cont.
NUMA (Non Uniform Memory Access)

CPU0 CPU1

CPU2CPU3

CPU0 local RAM

CPU3 local RAM

CPU1 local RAM

CPU2 local RAM

Interconnect

• Each CPU (or group of CPUs) has its own memory controller.

• Each of these groups (CPUs + memory) is called a node.

• All nodes joined together by some interconnect.

4

NUMA is not a cluster

• Definitions vary, but...

• Clusters are not cache coherent (SMP, NUMA are).

• Cache coherency ≈ a single system.

• You can run a single operating system image.

• Synchronisation primitives operate on regular memory.

• Can support threads programming models.

5

Why NUMA?
NUMA (Non Uniform Memory Access)

CPU0 CPU1

CPU2CPU3

CPU0 local RAM

CPU3 local RAM

CPU1 local RAM

CPU2 local RAM

Interconnect

• Access to local memory is very fast (latency and b/w).

• Memory capability scales with CPU count.

• Can support sophisticated cache coherency (BUS cannot).

6

The AMD Opteron

 4GB/s

 4GB/s

CPU0 CPU1

CPU2CPU3

 12.8GB/s DDR2-800

 1GHz HyperTransport

AMD Opteron

• Common and widely known NUMA architecture.

• ODMC (On Die Mem Controller), becomes NUMA at ≥ 2 sockets.

• Sockets talk to each other via hypertransport interconnect.

7

Naive NUMA support

 2.7GB/s

 4GB/s

CPU0 CPU1

CPU2CPU3
 2.7GB/s

 2.7GB/s 2.7GB/s

 4GB/s
 1.3GB/s

 1.3GB/s

 CPU0 bandwidth = 10.67GB/s

Interleaved

• Interleave allocations across nodes (HW support for non-NUMA OS).

• Statistically evens out the memory load over the system.

•
nodes−1

nodes (ie most) memory accesses will be remote.

8

Naive NUMA support cont.

 5.2GB/s

 4GB/s

CPU0 CPU1

CPU2CPU3
 5.2GB/s

 5.2GB/s 5.2GB/s

 4GB/s 4GB/s

 4GB/s

 Aggregate bandwidth = 21.32GB/s

Interleaving

 4GB/s

 4GB/s

 4GB/s

 4GB/s

• Interleaving doesn’t take advantage of local memory.

• Tends to bottleneck the interconnect.

• Problem only gets worse as system size grows.

9

Linux NUMA optimisations

CPU0 CPU1

CPU2CPU3

 12.8GB/s

 12.8GB/s

 12.8GB/s

 12.8GB/s

Aggregate bandwidth = 51.2GB/s
 (theoretical -- real world is lower)

 All CPU local

• If a process wants memory, allocate from local node by default.

• Works if data is accessed only by that process. Often the case.

• Breaks down if memory is shared between many processes.

10

When local allocation breaks

 4GB/s

CPU0 CPU1

CPU2CPU3

 12.8GB/s

 4GB/s 1.3GB/s

 1.3GB/s

 Aggregate bandwidth = 12.8GB/s

No interleaving

• Breaks down if memory is shared between many processes.

• Typical example: shared files in the pagecache (disk cache).

• Worst case: data brought in by one CPU, then used by all.

11

Linux strategy for shared data

• Some pagecache tends to be shared between many processes.

• Shared libs (libc), program text (gcc), shared data (eg. souce code).

• Current strategy: do interleaving for pagecache.

• Not so good if each process works on its own data. It’s a tradeoff.

12

How could we do better?

• For read-intensive data, replication is one possibility.

• Have a copy for each node that is accessing the data.

• If the data is to be read, the process is given the local page.

• If the data is to be written, must first get rid of all but one copy.

• Otherwise, the file looks different when read from different nodes.

That’s bad.

• Pagecache replication allows read-only shared data to be accessed

from node local memory. This is optimal memory access!

• It uses more RAM, and it costs a lot to replicate pages and discard

them if they get written to. Will require heuristics and “knobs”.

13

Linux 2.6 pagecache intro

inode
page_tree offset

struct page

• Linux 2.6 pagecache is a 2-dimensional data structure.

• Used to store or retrieve a page, given (inode, offset) key.

• inode contains a radix-tree, keyed by offset, stores page pointers.

14

Replicated pagecache design

• Perform replication on a per-page granularity.

• Replication occurs opportunistically, at pagecache lookup points in

the read(2) syscall, and read-access page fault to an mmap()ed file.

• If the page is found but not on the local node, then check if anyone

else might write to it. If not, make a local copy (replica), and return

that.

• This replica becomes part of the cache, so a subsequent lookup from

this node will find the local replica.

• All other paths that look up pagecache first cause all replicas to be

removed from any process addresses and discarded (because they

might write to the page).

15

Replicated pagecache design cont.

struct pcache_desc

page_tree

 NUMA node ID

struct page
(identical data)

inode
page_tree offset

struct page
(not replicated)

• Pagecache gains an optional 3rd dimension: NUMA node ID.

• Implemented with another data structure to index pages by node id.

16

Implementation

Sounds easy, but there are some difficulties!

1: struct pcache_desc {
2: struct page *master;
3: nodemask_t nodes_present;
4: struct page *page_array[MAX_NUMNODES];
5: };

• struct pcache desc – new part of the pagecache data structure.

• page array member can look up a page based on node id.

• master is a pointer to a “master” page. This is the one we retain

when tearing down other replicas.

• master page can contain filesystem metadata.

17

Pagecache lookups

find get page is the low level pagecache lookup function.
1: struct page *find_get_page(struct address_space *mapping,
2: unsigned long offset)
3: {
4: struct page *page;
5:
6: read_lock_irq(&mapping->tree_lock);
7: page = radix_tree_lookup(&mapping->page_tree, offset);
8: if (page)
9: page_cache_get(page);
10: read_unlock_irq(&mapping->tree_lock);
11:
12: return page;
13: }

• radix tree lookup can now return a pointer to either a struct

page or a struct pcache desc, depending on whether or not the

page is replicated.

• Must differentiate between the two cases with minimum overhead, I

use the lowest bit in the pointer!

18

Page replication

• Introduce a new function, find get page readonly.

• This looks for a local page, and if one can’t be found, try to replicate.

• Replication will fail if page is dirty or is referenced from somewhere.

• New function is used by read(2) and page faults (eg. program text).

• find get page, used everywhere else, must now collapse replicas.

• Write faults to mapped files must also collapse replicas.

19

Collapsing replicas

• Remove struct pcache desc 3rd dimension from the pagecache.

• Replace struct pcache desc with “master” page.

• Subsequent references will find the (not replicated) master page.

• Replicas may currently be referenced for read(2), which is OK.

• But pages mapped in page tables must be torn down before writing

to the pagecache!

20

Tearing down pagetables

• Pagecache can be mapped into user address space with mmap(2).

• Replicas allowed in mappings, so long as accesses are read-only.

• But they must all be unmapped when collapsing replicas...

• Next access to memory causes a page fault, maps in the right page.

• Unfortunately, unmapping a page is a complex operation we now

must call from find get page which was previously very simple.

Introduces locking dependencies and needs to sleep.

21

Problem – threads

TLB miss TLB miss

Thread 1 Thread 2

shared
page tables

 pages

• Threads all share the same page tables.

• So threads on different nodes cannot all use local replicas.

• Could replicate page tables too!

• But let’s just worry about processes first.

22

Problem – process migration

• Process with all its memory on node 1 gets migrated to node 2.

• Continues to run with what is now remote memory.

• Part of a more general problem with Linux NUMA memory allocation.

• Lee Schermerhorn’s automatic page migration aims to solve this.

23

Code outline

• ∼ 700 lines, mostly in mm/replication.c, half a dozen hooks into the

core memory manager.

• Configures away without overhead.

• Has a number of global tunables (eg. do not replicate, replicate read-

only file descriptors).

• Possibly should have more tunables – eg. cpuset integration, per-

process, per-vma policies.

• Needs performance testing. Needs positive results to be considered

for upstream.

24

Performance

• Haven’t been able to get good performance numbers.

• Have not seen any obvious performance regressions.

• Solaris saw about 10% improvement on OLTP on Opteron.

25

Conclusion

• Pagecache replication could be a good approach to reducing inter-

connect traffic and better utilising local memory in NUMA systems.

• There are lots of performance pitfalls (more straight line overhead,

more memory copy operations, more RAM used). So replication

would have to be used sparingly or in specialised environments.

Thank you

26

