Chapter 1

Lockless radix-tree

One of the requirements of a lockless pagecache is a pagedata structure that does not
require locking. A lockless radix-tree is presented in this chapter.

1.1 Read-Copy Update (RCU) overview

Read-Copy Update (RCU)is an algorithm that was primarily developed to permit a stiar
data structure to be read without using locks. In this capaBiCU’s main objective is to

provide an existence guarantee to the reader: that is, batdm or node currently under
examination by the reader is not concurrently freed.

Read-copy update provides a grace period to concurrenssesdy performing
destructive updates in two phases: 1) carrying out enougladt update for new
operations to see the new state, while allowing pre-exjstiperations to proceed
on the old state, then 2) completing the update after theegradod expires, so
that all pre-existing operations have completed.

citeMcKenneyOla

In most cases, especially with a non-trivial data strugtR@U cannot be simply “dropped in”
to make a data structure suitable for a lockless read-side.uual difficulty is to ensure that
the update-side will transform the data structure from call\state to the next, atomically,
from the point of view of the read-side. A lockless radixetfgor use by the Linux pagecache)
will now be put forward.

1Read-side operations, not including tag lookups, are maziédss

2Read-Copy Update was invented by Dr Paul McKenney and Jdhgvhe, McKenney was also a member
of the team who implemented the RCU infrastructure in Linuk McKenney has a wide range of papers on the
research and application of RCU, with a specific focus onX.itit p: / / www. r dr op. coni user s/ paul ntk/ RCU/

1

2 Lockless radix-tree

1.2 RCU radix-tree

In Linux, the per-inode treéock protects the integrity of the radix-tree pagecachea datic-
ture associated with that inode. Not only the internal iritggpf the structure, but also the
integrity of the results it delivers.

It is possible to remove the requirement of the tleek for lookup while maintaining the
integrity of the radix-tree structure and the results detid. Integrity of the data structure
itself will continue to be maintained with the use of the tteek for the write-side operations
on the radix-tree (modifications to the tree). What remairie iallow the lookup operations to
run concurrently with the write-side, while giving accdgtaresults regardless of the possible
concurrent interleaving of operations.

1.2.1 Radix-tree description

For ease of explanation, a simpler radix-tree structurébeildescribed than exists in Linux;
in particular, “tags” will be ignored. The concepts put famd here will be extended to cover
the Linux radix tree in Section 1.3.

A radix-tree is a tree of nodes, where the leaf nodes are tivaladata items. Each node has
a fixed, power of 2 number of pointers to nodes (known as slatg) there is a pointer to the

root node.
Joot node
Y
L1 [1
Ly
I

T =~ < leaf node

Figure 1.1: Radix-tree of height 3

81.2 RCU radix-tree 3

1.2.2 Radix-tree height

In Linux, the height of a radix-tree is defined as the numbedradersals from the root node
required to reach a leaf node.

Figure 1.1 illustrates the structure of a radix tree with dtsslper node, and a root node 3
traversals away from the leaf nodes. Slots which do not hexegva coming down from them
are empty (pointer contains NULL).

The Linux radix-tree is of variable height, depending onitidex keys stored. The radix-tree
lookup code must know the height of the the tree it is tramersso that it may determine
whether its slots are pointers are to leaf nodes or to antfier of radix-tree nodes. A radix-
tree in Linux has an associated “height” field to store thisrimation.

The tree height is insufficient for lockless lookups, beeaai€oncurrent write-side operation
may change the actual height of the tree, or the value of taghlt’ field at any time.

The solution to this problem relies on the observation thainges to the tree height are only
performed by inserting a new root node or removing the exgsitbot node, leaving the height
of any sub-tree the sam@&hus the height of a radix-tree node can be defined as thathafig
the sub-tree rooted at that node, and this height is invigigathe lifetime of the node. Figures
1.2 and 1.3 illustrate the node height invariant under meatifons to tree height.

®

=N h=N LI
TIIT — TIT e
- -

- T - T

lilililil |i|£|£|£| |i|£|£|£| lilililil

Figure 1.2 Increasing the tree height

The node height field can be set before the node is linked lgttrée, and remains unchanged
until the node is removed. Having a stable height per-noldevala lockless lookup to deter-
mine the number of traversals required until the leaf nodeseached, even if the tree height
is concurrently being modified.

4 Lockless radix-tree

j NI | | eofg;?t(\)\?tl O
BT T > D ——
vovovov v vy
— T T
- T - T
S A T T e T
B EEEEEEE EEEEEEERE

Figure 1.3 Decreasing the tree height

1.2.3 Radix-tree modification

Insertion and removal of data items are the two high levelifreadion operations that can be
performed on the radix-tree. Both operations can be brokemadnto a small number of basic
operations that can be made atomic (with respect to a camuookup) by careful ordering
of operations. It can then be shown that a concurrent lookodyzes the expected results
regardless of the interleaving of operations:

=

. Populate an empty slot with a pointer to a node or leaf-node

N

. Clear a populated slot (make it empty);

w

. Increase the height of the tree by 1;

4. Decrease the height of the tree by 1.

Insertion of a new item involves a combination of operatibramd 3, while deletion of an item
involves a combination of operations 2 and 4. If all these @pérations are shown to be safe
to run in the presense of concurrent lookups, then insext@mml deletions themselves may be
run in the presence of concurrent lookups.

1.2.3.1 Populate empty slot, clear populated slot

Operations to populate and clear radix-tree slots areattyvatomic with respect to lookup
code due to the fact that storing a value to a pointer fieldasat in Linux. A concurrent
lookup will only find either an empty slot or the valid pointer

81.2 RCU radix-tree

possible concurrent
lookup D

Figure 1.4: Population or clearing of a slot

Figure 1.4 illustrates a slot population or clearing oderatn red, and a concurrent lookup
operation in blue. Both the population and clearing operatiare a special case of the general
operation storing a value to a pointer field. In either casmrecurrent lookup may findither
the old or the new value.

When inserting a node (either leaf or non-leaf), the dathemtew node must be first initialised;
then a memory ordering instruction must be issued; therdiisess can be stored in the slot.
This ordering ensures that a concurrent lookup will not finthitialised data in the new node.
The correct memory ordering instructions are hidden in R@higives, but it is important for
the reader to be aware of them.

When removing a node (clearing a populated slot), it mustaiemalid and allocated for as
long as it is possible that a concurrent reader may still faveference to the old pointer.
This existence guarantee ensures that the concurrentrre@tiaot find the node has been
subsequently freed and used by something else. This gear@nprovided for non-leaf nodes
by RCU delayed freeing. Users of the radix-tree must protigdr own guarantees for the
existence of leaf nodes.

There are several types of interleavings of operations tcopsidered for correctness. Note
that non-leaf nodes are only ever inserted or removed whey dhe empty (they have no
children).

| | non-leaf node being inserted | non-leaf node being deleted

lookup finds node || continues at node (may now have childre

ngontinues at empty node, lookup fai

lookup finds NULL|| lookup fails lookup fails

Leaf nodes

| | leaf node being inserted leaf node being deletefd

lookup finds node || lookup succeeds lookup succeeds
lookup finds NULL|| lookup fails lookup fails

Is

6 Lockless radix-tree

Under node insertion or removal operations it is possibl@fooncurrent lookup to have more
than one outcome depending on the exact interleaving ofatipas, unlike a locked lookup
that only has one. This is not a fatal property of the lockles&up, but it does result in more
relaxed semantics (given in 1.2.4).

1.2.3.2 Increase tree height

When increasing the height of the tree, a new root node ischddd the previous root node
becomes its left-most child. The critical part of this ogierais switching the root node pointer
from the old to the new node. This is done after the new rooenuas been set up, so a
concurrent lookup traversing the pointer to the root nodikfimd either the old or the new
nodes. Similarly to inserting a new node, this operatiomuireg the new root to be initialised,
then a memory barrier issued, before the root pointer iched.

> ~
A} ~ <
‘ newlg/‘allocated

possible concurrent _ __ -
Iookups\\\ N N““‘) .
D U
| 1 ||

Figure 1.5 Increasing the height of the radix-tree

Figure 1.50.5 shows the process of increasing the radixtieght. There are several com-
binations of lookup types and interleavings to consideg; fillowing table illustrates that in
each case, behaviour is unchanged regardless of whetheortbharrent lookup finds the new

81.2 RCU radix-tree 7

or the old root.

| | lookup key within old root | lookup key not within old root |
lookup finds old root || continues at old root old root out of range, lookup fails
' leftmost slot of new root taken, if key out of range of new root, lookup fails;
lookup finds new roo . .
continues at old root else all slots but leftmost empty, lookup fails

1.2.3.3 Decrease tree height

Decreasing the height of the tree is similar to the increpsiperation, in reverse. The root
node is empty except for its left-most child, which beconfesrtew root.

The old root is freed with the delayed RCU mechanism. Figusdllistrates why the existence
guarantee provided by RCU is required: a concurrent lookay still be operating on the old
root nodeafter the root pointer has switched over; if the old root were imiatedy freed, the
concurrent lookup would be corrupted.

The interleavings of concurrent lookups are symmetric ¢z¢hin the height increasing oper-
ation and can likewise shown to be unchanged regardlessathetha lookup finds the old or
the new root.

| || lookup key within new root | lookup key not within new root |
lookup finds new roof| continues at new root new root out of range, lookup fails

leftmost slot of old root taken, if key out of range of old root, lookup fails;
continues at new root else all slots but leftmost empty, lookup fails

lookup finds old root

1.2.4 Lockless radix-tree lookup semantics

Radix-tree lookups which are performed under lock havedhewing semantics:

1. if the offset was always empty (within the locks), returdI\N;

2. if the offset always contained an item, return that item;

A lockless radix-tree lookup has more relaxed semanticstaltiee the fact that behaviour is
not deterministic in the presence of concurrent insertmmemovals.

1. ifthe offset was always empty (according to higher leyakfronisation), return NULL;

2. if the offset always contained an item, return that item;

8 Lockless radix-tree

_possible concurrent
- lookups
- .

‘ | | RC[J\deIayed free

Figure 1.6 Decreasing the height of the radix-tree

3. if NULL is returned, that offset must have been empty atesdime;

4. if an item is returned, it must have existed at that offsebane time.

It is shown in Chapte?? that the Linux pagecache lookup routines can be implemdaotéd
lessly with these given radix-tree lockless lookup sencanti

1.3 Implementation details

1.3.1 Radix-tree tags

One detail glossed over in the description of the radix;teewl design of the lockless lookup
are so-called radix-tree tags. In the Linux radix-tree heslot has a corresponding set of tags

81.3 Implementation details 9

which are implemented as a bitmap. These tags are part oétliretree node structure, and
are set and cleared under lock.

“Tagged lookups” are lookups which return radix-tree estrvhich have a specific tag set, or
may query which tags are set for a given entry. Tagged lookugpsbe performed in parallel,
but they require exclusion from operations which set orrdiags.

The lockless radix-tree requires that tag operationsudiol read-side operations are still
performed under the same synchronisation: most tag opesatised on the pagecache radix-
tree are associated with relatively infrequent operatsueh as 10.

The only additional concurrency case this introduces iagged (lockless) lookups versus tag
setting and clearing operations. Untagged lookups do fettahg operations in any way, nor
do any tag operations change the structure of the tree orfynaxy data which is used used
by untagged lookups.

1.3.2 Gang lookups

The radix-tree has facilities to perform gang lookups tledtimn, at most, the next N items
starting from a given offset. It is possible to perform gaagkups without taking any locks
for the same reasons that a lookup is able to be locklessiibed@bove.

While the locked gang lookup guarantees that all items metlirare present in the tree and
that they are the only items present over the given rangehirduration of the lock, the
lockless gang lookup may return items that no longer exidtraiss items that are now present.
Basically the semantics are the same as those for the ladklekup, applied to each entry in
the range of the gang lookup.

1.3.3 Child count

As well as height, child slots, and tag bits, the radix-tree-feaf node contains a “count” field.
The count field contains the number of children present isldts3.

The child count requires no extra consideration when motoraglockless lookup because the
it is only ever read or modified by write-side operations, aghhtontinue to maintain the same
synchronisation requirements with respect to one another.

3Aside, the child count is used to shrink the radix tree wherienare deleted

10

Lockless radix-tree

