
When the Kernel
Runs Out of Memory

August 10, 2010

David Rientjes
Google, Inc

2 of 13

Cost per Gigabyte RAM

Aug 2000 Aug 2001 Aug 2002 Aug 2003 Aug 2004 Aug 2005 Aug 2006 Aug 2007 Aug 2008 Aug 2009

$0

$100

$200

$300

$400

$500

$600

$700

$800

$900

$1,000

Source: jcmit.com

3 of 13

Cost per Gigabyte RAM

 Aug 1990 $83,072

Aug 1991 $42,240

Aug 1992 $31,744

Aug 1993 $30,720

Aug 1994 $37,888

Aug 1995 $31,334

Aug 1996 $9,277

Aug 1997 $4,229

Aug 1998 $1,055

Aug 1999 $845

Aug 2000 $860

Aug 2001 $195

Aug 2002 $198

Aug 2003 $132

Aug 2004 $180

Aug 2005 $136

Aug 2006 $75

Aug 2007 $38

Aug 2008 $18

Aug 2009 $11

Source: jcmit.com

4 of 13

What is Out of Memory?

Out of Memory (OOM) occurs when an application
cannot allocate pages and no allowed memory may be

reclaimed or compacted.

This may happen as the result of a complete depletion
of system memory, memory controller limits, cpuset

constraints, mempolicies, and/or fragmentation.

In a blockable context, the OOM Killer is the kernel's last
resort to free memory and does so by killing the task that

will most likely prevent subsequent page allocation
failures.

5 of 13

OOM Killer Rewrite
● Self-nominating of current when it has a fatal signal

● Child with highest badness heuristic score is sacrificed
for parent if it does not share the same memory

● When a cpuset is OOM, the killed task's set of allowed
nodes must intersect that of current

● For MPOL_BIND policies, the killed task must be
allowed to allocate from current's nodes

● OOM killer is not called for DMA allocations

● Tasklist dump is enabled by default to show memory
usage of each candidate task

6 of 13

OOM Killer Rewrite
● All architectures share same page fault OOM

behavior, now unified with the same semantics

● Entirely new badness heuristic used to determine
which task to kill

● Introduce new /proc/pid/oom_score_adj interface to
tune heuristic from userspace

● Deprecated old /proc/pid/oom_adj interface

● Currently in -mm tree, on track for 2.6.36

7 of 13

Mempolicies
● MPOL_BIND policies bind VMAs to nodes

● Restricts memory allocations only to nodes in the mempolicy
mask

● When nodes are full of unreclaimable memory, the OOM Killer
is called to free memory

● In 2.6.35 and earlier, current is always killed since it is
guaranteed to prevent subsequent failures

● With the OOM Killer rewrite, tasklist is iterated to find best task
to kill

● Tasks that have MPOL_BIND or MPOL_INTERLEAVE policies
that have disjoint nodemasks are immune from OOM kill

8 of 13

Cpusets
● Bind applications to a set of cpus and a set of nodes

● Used by large NUMA machines to optimize for
memory latency

● May be hierarchical, child cpusets must have a subset
of cpus and nodes

● When a cpuset is OOM, killed task must be allowed to
allocate on current's set of allowed nodes

● Doesn't help to kill a task if current still can't allocate
memory

● Exceptions: GFP_ATOMIC, TIF_MEMDIE, irqs

9 of 13

Memory Controller
● Enforces limits on the number of user pages a set of

tasks may allocate

● May be hierarchical

● Reclaim is attempted prior to calling OOM Killer

● When a memory controller is OOM and OOM killing is
enabled, a task must be killed to enforce the limit

● Killed task must be from same memory controller or
child memory controller, if hierarchical

10 of 13

OOM Killer
● Kills a memory-hogging task to recover a large amount

of memory to prevent subsequent failures

● Avoids killing tasks that will not recover memory for
current

● Waits for OOM killed task to fully exit before killing
additional tasks

● Serialized by zones in the page allocator's zonelist to
prevent parallel killing

● Unfortunately susceptible to mm->mmap_sem livelock

11 of 13

/proc/sys/vm/oom_dump_tasks

● Filtered by tasks eligible to be killed depending on the context

● With OOM Killer rewrite, enabled by default

12 of 13

New Heuristic
● “Badness” score ranges from 0 (never kill) to 1000

(always kill)

● Very large memory allocators (swapoff, ksm) are chosen
automatically

● Heuristic baseline is now the task's resident set size
(rss) and swap divided by the amount of allowed
memory

● Root tasks are given 3% memory bonus, similar to
LSMs

● Not used if /proc/sys/vm/oom_kill_allocating_task is
enabled

13 of 13

/proc/pid/oom_score_adj
● Powerful userspace influence to either prioritize or

penalize a task for OOM kill

● Ranges from -1000 (OOM_DISABLE) to +1000

● May disable OOM killing completely for a task by
writing OOM_DISABLE

● Adjusts the “badness” of a task by adding its value
directly into the heuristic's score

● Deprecates /proc/pid/oom_adj (scheduled removal in
August 2012)

● Currently backwards compatible with oom_adj users

