
Presented by:

Tune Disk I/O To Speed Up MeeGo Boot

Shaohua Li <shaohua.li@intel.com>



Agenda

• Overview

• Better Defragmentation

• metadata readahead

• Things TO DO

2



Target Requirements

• Only evaluate disk I/O impact

• Hard disk* based system

3

*Hard disk means rotate disk in the talk



Disk I/O Impact for Boot

• Why matters? slow disk vs. fast CPU

• OS generally deploys a kind of readahead to 

overcome the imbalance

– CPU and disk I/O run in parallel without interfere

– For example:

• ureadahead for Ubuntu

• sreadahead for MeeGo

4



How readahead Works

5

read A

T0 T1 T2 T3

CPU

Disk I/O

parallel execution completely

access  Baccess  A access  C

read B read C



sreadahead

• Similar like other readahead

• How sreadahead works?

– Collection stage (first run)

• Collect info about all files required by boot (mincore)

• do defragment for all the files

– Readahead stage (later run)

• read data of the files per collected info (readahead)

• Do normal boot

• Great for SSD, but not very efficient for rotate disk

6



Test Environment

• EeeePC 1005PE

• MeeGo 1.0

• sreadahead version 0.10

• Root filesystem is btrfs

7



Boot Chart Without Either Optimization

8

boot end



Hard Disk Performance Principles

• Avoid spindle seek because seek penalty is big

• Merge I/O requests because small and big requests 

take the same time usually

9



Better Defragment

• Boot reads several files,  file1, file2, file3…

• sreadahead implementation:

– Do defragment for the files

– Disk blocks for one file are adjacent

– Disk blocks between files are not adjacent

• Not sufficient

10

I/O seek

File1 File2 free



How

• Before doing defragment, mount file system 

with ‘-o ssd’

– btrfs uses a different block allocator policy

– Without  ‘-o ssd’: find a free block range 

fitting a file, and store the file to the block 

range

– With ‘-o ssd’: allocate a big range (usually 

1G) in a batch, subsequent allocations are 

all taken from the big range

11



Defrag without ‘-o ssd’

Defragmenting File1 and File2

12

before

after

File1 File2 free

I/O seek



Defrag with ‘-o ssd’

Defragmenting File1 and File2

13

before

File1 File2 free

after



Results

• Less I/O seek

• Average savings of 1 ~ 3 seconds boot time

• The optimization is merged in MeeGo already

14



Better Defrag is Still Not Sufficient

• Read file involves both data and metadata (inode info)

• Metadata read is synchronous read and data 

readahead must wait for metadata read finish

15

File1 data File2 data free

1 3 2 2 2 4 4

File1 metadata File2 metadata



metadata readahead

• Two new ioctls for btrfs:

– metadata_incore (find metadata in memory)

– metadata_readahead (readahead metadata)

• New ioctls looks just like readahead/mincore syscall, 

but acts for special btree_inode of btrfs

• btree_inode stores all metadata in btrfs

16



How to utilize them

• Collection stage:

– metadata_incore collect metadata in memory

– Store the info to a configuration file

• readahead stage:

– read metadata info from the configuration file

– metadata_readahead reads all metadata one time

– start previous sreadahead process

17



Advantages of metadata readahead

• Metadata read is asynchronous

• Still has seeks but:

– Seek in one round and there is no back seek

– No mixed seeks between data and metadata

• In data readahead stage, all metadata are in memory. 

Data readahead can be fully pumped

18

File1 data File2 data free

1 1 2 2 2 3 3

File1 metadata File2 metadata



Results

• Less seek and no data readahead stall time

• Average savings of 3.5 seconds boot time

19



Hit Rate

• Is metadata collected before still valid?

• Hit rate = (valid metadata read by sreadahead)/(total 
metadata required by boot)

• Do a test:

– Create 4 directories, and create 12 empty files for 
each directory. Delete 2 directories, and each 
directory has 12 empty files

– The hit rate > 80% and the test has no hurt to boot 
time

• Tip: Do metadata info collect every day or every boot 
because metadata_incore is optimized to be low 
overhead

20



metadata Info Increases?

• Considering below scenario:

– Collect metadata info (metadata set A) 

– Do some fs operations (metadata set B)

– Collect metadata info at the second time

• Total metadata info collected is AUB

• Useless metadata info collected is (A-B)

21

Total metadata collected

Useless metadata



How to Avoid metadata Info Increasing

• Before btrfs accesses a metadata page, the ‘referenced’ 
bit will be set for the page. Otherwise, not set

• Metadata_incore ignores pages without the bit set

• In this way we can filter useless metadata

22



Combined Optimization Results

Total boot time saved is about 6 seconds

23

boot end



24

original

new



Things TO DO

• Push to upstream and to MeeGo

• Evaluate if the metadata readahead optimization 

helps SSD

• Evaluate the impact of range defragmentation

25



Q&A

26



27


