
IBM Software Lab, India

 © 2008 IBM Corporation

Linux Asynchronous I/O Design: Evolution &
Challenges

Suparna Bhattacharya
suparna@in.ibm.com

Senior Technical Staff Member,

Linux Technology Center

IBM Systems and Technology Lab, India

IBM Software Lab, India

© 2008 IBM Corporation2

Linux Kernel Developers Summit - 2002

Can you guess: How many changes (lines of code) make their way into
the mainline linux kernel every day ?

IBM Software Lab, India

© 2008 IBM Corporation3

Introduction to AIO

 AIO overlaps processing with I/O Operations

– App can submit (batch) IO w/o waiting for completion

• Separate calls for submission & completion indication
• Pipeline operations for improved throughput

 Improved utilization of CPU and devices

– Web servers, databases, I/O intensive applications

• Avoid need for lots of threads, event driven model

– Application and system performance

• Adapt to dynamically varying loads

• Optimize disk activity (e.g. combining/re-ordering requests)

Food for thought:: What makes having lots of threads a problem ?

IBM Software Lab, India

© 2008 IBM Corporation4

AIO Architecture Decisions

 External interface (API) choices

– Common interface for sync & async (Example ?)

– Unique set of interfaces for AIO

• Can address specific requirements, e.g. batch submission

 Alternative system design principles

– Sync and async share a common code path

• e.g. sync = async + wait

– Sync and async paths diverge as needed

• May be tuned for different performance characteristics

IBM Software Lab, India

© 2008 IBM Corporation5

Linux AIO API

 Native Linux AIO API (libaio)

– io_setup, io_destroy [queue setup/teardown]

– io_submit (e.g. IO_CMD_PREAD, IO_CMD_PWRITE)

– io_getevents [completion status notification]

– io_cancel

 POSIX AIO API (glibc)

– aio_read/aio_write/aio_fsync

– lio_listio

– aio_cancel, aio_suspend, aio_return/aio_error

IBM Software Lab, India

© 2008 IBM Corporation6

Linux File System IO - Recap

 Generic file read

– For each page in range

• page_cache_readahead
• lock_page
• aops->readpage if not

uptodate
– map blocks & issue read

• wait till page is unlocked
(indicates IO completion)

• copy data to user buffer

 Generic file write

– For each page in range

• map (and read) blocks
• copy data from user buffer
• mark pages dirty

– If (O_SYNC)

• writeout dirty mapping
pages (use radix tree)

• sync meta-data updates
• wait for writeback to

complete on these pages

(inode sem locking, journal)
Question: Can you detect other blocking
points besides the ones marked above ?

IBM Software Lab, India

© 2008 IBM Corporation7

Linux File System Direct IO - Recap

 O_DIRECT option

– Streams entire IO direct to BIO

• inode sem locking, consistency wrt concurrent/buffered IO

 Block device FS direct IO

– Walk user pages and the file range

• get_user_pages (pin some user buffer pages)
• Map blocks to disk
• Submit io (collated)

– Wait for completion of all submitted IO

• DIO structure (tracks count of BIOs)

– Post-processing for completed IO (dirty pages)

Question: Can
you detect other
blocking points
besides the ones
marked here ?

IBM Software Lab, India

© 2008 IBM Corporation8

Alternate Design Models for AIO

 Offload entire IO to thread pools

– User level threads (e.g. glibc implementation)

– Kernel threads

 Fully async state machine for every operation

– Series of event driven non-blocking steps

– Map user buffers to process context indep. form

 Hybrid approach with split phase I/O

– Async submission, pool of threads to wait for completion

• Per-address space threads for user context dependencies

– e.g. SGI KAIO

IBM Software Lab, India

© 2008 IBM Corporation9

Linux AIO Evolution

 POSIX AIO implementation in glibc

 SGI KAIO patches

 Linux 2.4 distro add on patches (RHEL, SLES)

– General FSAIO

 Linux 2.6 mainline

– AIO Direct IO

 Linux 2.6 external patches

– General FSAIO, AIO-epoll, POSIX AIO enablement

– Syslets & threadlets (general async system calls)

IBM Software Lab, India

© 2008 IBM Corporation10

Linux Kernel 2.6 AIO – Basic Infrastructure

 Data structures

– IO context (ioctx)

– IO control block (iocb)

– Ring buffer - completion events

– AIO workqueue

 A few implementation issues

– Tricky race conditions (submit/complete/cancel paths)

– Latency, fairness, batching, ordering

– Resource limits and scaling

– Process exit conditions

IBM Software Lab, India

© 2008 IBM Corporation11

Linux 2.6 – Asynchronous Direct IO

 IO completion step async

– Return -EIOCBQUEUED after all IO is submitted

• BIO completion callback completes iocb from interrupt context
when entire DIO is done

– Workqueue for post-processing which cannot be from
interrupt context

• Optimization: mark pages dirty before IO, redirty if needed

 Caveats

– Multiple potential blocking points not converted to async

• Works in practice for special requirement of databases

– DIO code fragile, AIO-DIO error handling messy

Quick Check: Can
you identify the AIO
design model used
here ?

IBM Software Lab, India

© 2008 IBM Corporation12

AIO Results – OLTP example

Configurat ion

1 page cleaner with AIO 133 100
55 page cleaners without AIO 122 70

Relat ive
throughput

Page cleaner
writes (%)

 Update-intensive OLTP database workload, Derived from a TPC
benchmark, but in no way comparable to any TPC results

 DB2 V8, Linux 2.6.1, 2-way AMD Opteron, QLogic 2342 FC, 2 storage
servers x 8 disk enclosures x 14 disks each, RAID-0 configuration, stripe
size 256KB

IBM Software Lab, India

© 2008 IBM Corporation13

Generalized File System AIO – Linux 2.4 patches

 Work-to-do callback driven async state machine

– (Almost) fully asynchronous but complex & hard to debug

 Separate code paths for sync and async

– Allow special tuning for AIO, but duplication =>
maintainability issues

 Pin user buffers

– Avoids extra threads for completing IO in caller's context
but causes inefficient utilization of TLB for small buffers

 Per filesystem impact

– Why does that matter ?

IBM Software Lab, India

© 2008 IBM Corporation14

Linux wait queue mechanism - Recap

 Basic mechanism

– wait_queue_head

– wait_queue_t

• wait_queue_function, task to wakeup

– prepare_to_wait(), finish_wait(), wakeup()

• Flags: TASK_INTERRUPTIBLE, TASK_UNINTERRUPTIBLE

– io_schedule()

 Hashed wait queues

– Filtered wakeups

– Example: page wait queue

Question: What purpose does
the wait_queue_function
serve ?

IBM Software Lab, India

© 2008 IBM Corporation15

Generalized File System AIO – Linux 2.6 patches

 Retry based AIO model

– Convert main blocking points to retry exits in AIO context

• Return no. of bytes completed or -EIOCBRETRY

– Series of non-blocking iterations through an IO request

• async wait callback schedules reissue of fop->aio_read/write
with modified arguments representing the remaining IO

– Retry threads take on caller's address space (use_mm)

 AIO and Sync IO share a common code path

– AIO = Sync IO – wait + retry (vs Sync IO = AIO + wait)

• e.g. iocb = container_of(current_wait()) in AIO context

Question: Is there a pre-requisite for the retry model to be applicable ?

IBM Software Lab, India

© 2008 IBM Corporation16

Question: How would IO
cancellation work in the retry
model ?

IBM Software Lab, India

© 2008 IBM Corporation17

Filesystem AIO Results (Random read/write)

 Filesystem: Ext3, blocksize: 4KB, file : 1GB

 4-way Pentium(tm) III, 700MHz, 512MB, AIC7896 Ultra2 SCSI

 Interesting issues: IO ordering with readahead, writeback & concurrency

IBM Software Lab, India

© 2008 IBM Corporation18

Combining Network & File AIO – Linux 2.6 patches

 Typical event loop

– Epoll (scalable file event polling) EPOLL_CTL_ADD/DEL

– Socket read/write

• O_NONBLOCK (readiness to send, available data to read)

 Experimental

– AIO epoll: IO_CMD_EPOLL_WAIT

– Simulating AIO using async poll & O_NONBLOCK retries

– Kevent

 Eventfd (now in mainline, 2.6.22 onwards)
Food for thought: What makes network IO and file IO so different ? Why have so
many alternatives emerged ?

IBM Software Lab, India

© 2008 IBM Corporation19

Building POSIX AIO over Kernel AIO – Linux 2.6
patches

 Signal notification

 lio_listio

– IO_CMD_GROUP

 aio_cancel_fd

 AIO support for all types of file-descriptors

– Fallback implementation

IBM Software Lab, India

© 2008 IBM Corporation20

Syslets & Threadlets: Generalized asynchronous
systems calls – Linux 2.6 patches

 “Cache miss” concept applied to threading

– On-demand parallelism (Only if the original context blocks)

– Switch caller's user space context to a cache miss thread
which continues user space execution without stopping

• Spares users from setting up, sizing and feeding a thread pool

 Threadlets (“Optional threads”)

– Small functions of execution

 Syslets

– Small, kernel-side, scripted "syscall plugins"

IBM Software Lab, India

© 2008 IBM Corporation21

“So all in one, I used to think that AIO state-machines have a

long-term place within the kernel, but with syslets I think I've

proven myself embarrasingly wrong =B-)”

- Ingo Molnar, Feb 2007

Food for thought: Are there real situations where the overheads matter ?

IBM Software Lab, India

© 2008 IBM Corporation22

Observations

 Many challenges beyond conversion to async

– API decisions, compatibility implications

– AIO exposes scenarios and IO patterns less likely with
synchronous workloads

• Inherent concurrency, contextual assumptions

 Shaped by real use cases that matter

– AIO direct IO driven by database requirements

Food for thought: Why has getting real use cases been a challenge ?

IBM Software Lab, India

© 2008 IBM Corporation23

Credits & Thanks

 Benjamin LaHaise

 Zach Brown

 Badari Pulavarathy

 Chris Mason

 Andrew Morton

 Jeff Moyer

 Janet Morgan

 Kenneth Chen

 Ulrich Drepper

 Andrew Tridgell

 Laurent Vivier

 Sebestian Dugue

 Davide Libenzi

 Evgeniy Polyakov

 William Lee Irwin III

 Christoph Hellwig

 Ingo Molnar

 Stephen Tweedie

 Linus Torvalds

IBM Software Lab, India

© 2008 IBM Corporation

Legal Statement

This work represents the view of the authors and does not necessarily represent the
view of IBM.

IBM and the IBM logo are trademarks or registered trademarks of International
Business Machines Corporation in the United States and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Other company, product, and service names may be trademarks or service marks of
others

References in this publication to IBM products or services do not imply that IBM
intends to make them available in all countries in which IBM operates.

This document is provied ``AS IS,'' with no express or implied warranties. Use the
information in this document at your own risk.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

