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Linux Kernel Developers Summit - 2002

Can you guess: How many changes (lines of code) make their way into 
the mainline linux kernel every day ?
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Introduction to AIO

 AIO overlaps processing with I/O Operations

– App can submit (batch) IO w/o waiting for completion

• Separate calls for submission & completion indication
• Pipeline operations for improved throughput

 Improved utilization of CPU and devices

– Web servers, databases, I/O intensive applications

• Avoid need for lots of threads, event driven model

– Application and system performance

• Adapt to dynamically varying loads

• Optimize disk activity (e.g. combining/re-ordering requests)

Food for thought:: What makes having lots of threads a problem ?



IBM Software Lab, India

© 2008 IBM Corporation4  

AIO Architecture Decisions

 External interface (API) choices

– Common interface for sync & async (Example ?)

– Unique set of interfaces for AIO

• Can address specific requirements, e.g. batch submission

 Alternative system design principles

– Sync and async share a common code path

• e.g. sync = async + wait

– Sync and async paths diverge as needed

• May be tuned for different performance characteristics
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Linux AIO API

 Native Linux AIO API (libaio)

– io_setup, io_destroy [queue setup/teardown]

– io_submit (e.g. IO_CMD_PREAD, IO_CMD_PWRITE)

– io_getevents [completion status notification]

– io_cancel

 POSIX AIO API (glibc)

– aio_read/aio_write/aio_fsync

– lio_listio

– aio_cancel, aio_suspend, aio_return/aio_error
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Linux File System IO - Recap

 Generic file read

– For each page in range

• page_cache_readahead
• lock_page
• aops->readpage if not 

uptodate
– map blocks & issue read

• wait till page is unlocked 
(indicates IO completion)

• copy data to user buffer

 Generic file write

– For each page in range

• map (and read) blocks
• copy data from user buffer
• mark pages dirty

– If (O_SYNC)

• writeout dirty mapping 
pages (use radix tree)

• sync meta-data updates
• wait for writeback to 

complete on these pages

(inode sem locking, journal)
Question: Can you detect other blocking 
points besides the ones marked above ?
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Linux File System Direct IO - Recap

 O_DIRECT option

– Streams entire IO direct to BIO 

• inode sem locking, consistency wrt concurrent/buffered IO

 Block device FS direct IO

– Walk user pages and the file range

• get_user_pages (pin some user buffer pages)
• Map blocks to disk
• Submit io (collated)

– Wait for completion of all submitted IO

• DIO structure (tracks count of BIOs)

– Post-processing for completed IO (dirty pages)

Question: Can 
you detect other 
blocking points 
besides the ones 
marked here ?
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Alternate Design Models for AIO

 Offload entire IO to thread pools

– User level threads (e.g. glibc implementation)

– Kernel threads

 Fully async state machine for every operation

– Series of event driven non-blocking steps

– Map user buffers to process context indep. form

 Hybrid approach with split phase I/O

– Async submission, pool of threads to wait for completion

• Per-address space threads for user context dependencies

– e.g. SGI KAIO
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Linux AIO Evolution

 POSIX AIO implementation in glibc

 SGI KAIO patches

 Linux 2.4 distro add on patches (RHEL, SLES)

– General FSAIO

 Linux 2.6 mainline

– AIO Direct IO

 Linux 2.6 external patches

– General FSAIO,  AIO-epoll, POSIX AIO enablement

– Syslets & threadlets (general async system calls)
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Linux Kernel 2.6 AIO – Basic Infrastructure

 Data structures

– IO context (ioctx)

– IO control block (iocb)

– Ring buffer - completion events

– AIO workqueue

 A few implementation issues

– Tricky race conditions (submit/complete/cancel paths)

– Latency, fairness, batching, ordering

– Resource limits and scaling

– Process exit conditions
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Linux 2.6 – Asynchronous Direct IO

 IO completion step async

– Return -EIOCBQUEUED after all IO is submitted

• BIO completion callback completes iocb from interrupt context 
when entire DIO is done

– Workqueue for post-processing which cannot be from 
interrupt context

• Optimization: mark pages dirty before IO, redirty  if needed

 Caveats

– Multiple potential blocking points not converted to async

• Works in practice for special requirement of databases

– DIO code fragile, AIO-DIO error handling messy

Quick Check: Can 
you identify the AIO 
design model used 
here ?
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AIO Results – OLTP example

Configurat ion

1 page cleaner with AIO 133 100
55 page cleaners without  AIO 122 70

Relat ive 
throughput

Page cleaner 
writes (%)

 Update-intensive OLTP database workload, Derived from a TPC 
benchmark, but in no way comparable to any TPC results

 DB2 V8, Linux 2.6.1, 2-way AMD Opteron, QLogic 2342 FC, 2 storage 
servers x 8 disk enclosures x 14 disks each, RAID-0 configuration, stripe 
size 256KB
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Generalized File System AIO – Linux 2.4 patches

 Work-to-do callback driven async state machine

– (Almost) fully asynchronous but complex & hard to debug

 Separate code paths for sync and async

– Allow special tuning for AIO, but duplication => 
maintainability issues

 Pin user buffers 

– Avoids extra threads for completing IO in caller's context 
but causes inefficient utilization of TLB for small buffers

 Per filesystem impact

– Why does that matter ?
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Linux wait queue mechanism - Recap

 Basic mechanism

– wait_queue_head

– wait_queue_t

• wait_queue_function, task to wakeup

– prepare_to_wait(), finish_wait(), wakeup()

• Flags: TASK_INTERRUPTIBLE, TASK_UNINTERRUPTIBLE

– io_schedule()

 Hashed wait queues

– Filtered wakeups

– Example: page wait queue

Question: What purpose does 
the wait_queue_function 
serve ?
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Generalized File System AIO – Linux 2.6 patches

 Retry based AIO model

– Convert main blocking points to retry exits in AIO context

• Return no. of bytes completed or -EIOCBRETRY

– Series of non-blocking iterations through an IO request

• async wait callback schedules reissue of fop->aio_read/write 
with modified arguments representing the remaining IO

– Retry threads take on caller's address space (use_mm)

 AIO and Sync IO share a common code path

– AIO = Sync IO – wait + retry (vs Sync IO = AIO + wait)

• e.g. iocb = container_of(current_wait()) in AIO context

Question: Is there a pre-requisite for the retry model to be applicable ?
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Question: How would IO 
cancellation work in the retry 
model ?
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Filesystem AIO Results (Random read/write)

 Filesystem: Ext3, blocksize: 4KB, file : 1GB

 4-way Pentium(tm) III, 700MHz, 512MB, AIC7896 Ultra2 SCSI

 Interesting issues: IO ordering with readahead, writeback & concurrency
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Combining Network & File AIO – Linux 2.6 patches

 Typical event loop

– Epoll (scalable file event polling) EPOLL_CTL_ADD/DEL

– Socket read/write

• O_NONBLOCK (readiness to send, available data to read)

 Experimental

– AIO epoll: IO_CMD_EPOLL_WAIT

– Simulating AIO using async poll & O_NONBLOCK retries

– Kevent 

 Eventfd (now in mainline, 2.6.22 onwards)
Food for thought:  What makes network IO and file IO so different ? Why have so 
many alternatives emerged ?
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Building POSIX AIO over Kernel AIO – Linux 2.6 
patches

 Signal notification

 lio_listio

– IO_CMD_GROUP

 aio_cancel_fd

 AIO support for all types of file-descriptors

– Fallback implementation
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Syslets & Threadlets: Generalized asynchronous 
systems calls – Linux 2.6 patches

 “Cache miss” concept applied to threading

– On-demand parallelism (Only if the original context blocks)

– Switch caller's user space context to a cache miss thread 
which continues user space execution without stopping

• Spares users from setting up, sizing and feeding a thread pool

 Threadlets (“Optional threads”)

– Small functions of execution

 Syslets 

– Small, kernel-side, scripted "syscall plugins"
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“So all in one, I used to think that AIO state-machines have a 

long-term place within the kernel, but with syslets I think I've 

proven myself embarrasingly wrong =B-)”

- Ingo Molnar, Feb 2007

Food for thought: Are there real situations where the overheads matter ? 
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Observations

 Many challenges beyond conversion to async

– API decisions, compatibility implications

– AIO exposes scenarios and IO patterns less likely with 
synchronous workloads

• Inherent concurrency, contextual assumptions

 Shaped by real use cases that matter

– AIO direct IO driven by database requirements

Food for thought: Why has getting real use cases been a challenge ?
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