

Scaling the Linux Kernel (Revisited):
Using Ext4 as a Case Study

Theodore Ts'o
Google

January 25, 2011

Back to the Future!

Back to the Future!

In 2001...

● Linux 2.4
● IBM had just announced it was going to invest

a billion dollars into Linux
● Linux had SMP, but it was barely scalable to 4

CPU's
– What does this mean?

– Why does this matter?

SMP: For when one CPU isn't
enough

● Back then, one CPU was a lot slower
– 6 Moores Law doublings in the last 9 years

● People who needed more computing power
than that might buy a Sequent system with 8,
16, or 32 Pentiums

Then as now, SMP is expensive

● Coordinating a large number of sockets is
expensive

– What if two CPU's want to read/write to the
same memory location?

– How is cache coherency handled?

● The interconnect between between the CPU's
is critically important

– Cheating with NUMA (Non-uniform Memory
Access)

● A 4 CPU machine costs far more than 4 times
single CPU machines

– So if customers are going to pay $$$ for SMP
they want to get all of the CPU power that
they paid for!

Measuring SMP scalability

● Run one or more benchmarks using a single
CPU

– Volanomark

– FSCache

– Netperf

– SpecWeb99

– SPEC sdet

– IOZONE

– TPC-C/D/H

Measuring SMP scalability

● Run one or more benchmarks using a single
CPU

● Now run the same benchmarks on a N CPU
machine

● S = (score on 1 CPU / score on N CPU's)
● The OS is said to have a scalability of S out of

N on that benchmark
– Example: “Linux 2.6 has scales to 12 out of 16

CPU's on the fooblatz benchmark”

Scalability is HARD

● 12 out 16 CPU's is actually considered pretty
good for some benchmarks

– But that means we're only using 75% of a
machine that costs way more than 16 times a
single CPU server!

● At the time, Linux 2.4 barely scaled to 4 CPU's
on many benchmarks

– Well less than 3x the single CPU benchmark
score

– On some benchmarks, Linux was actually
slower on a 4 CPU machine (negative
scalability!)

Linux Scalability Effort

● Spearheaded by IBM's Linux Technology
Center

– Other companies:
● SGI
● Intel
● VA Linux
● University of Michigan CITI

Linux Scalability Effort

● Spearheaded by IBM's Linux Technology
Center

– Weekly conference calls

– Regular (weekly/monthly) benchmark
measurements by a performance team

– Developers stared at CPU and lock profiles to
find and then fix bottlenecks

– Wash. Rinse. Repeat.

● This went on for 2-3 years, and then victory
was declared and everyone went home

Linux scalability as of 2003-4

● Good, but certainly not perfect
– Scaled to 6-7 out of 8 CPU's on most

benchmarks

– Scaled to at least 12 out 16 CPU's on many
benchmarks

– Scaled to an acceptable number of CPU's on 32
CPU's

● Why did people stop?

Linux succeeded wildly on x86

● … but not necessarily on other platforms
– Turned out people who spend $$$ on a high-

end Sparc or Power server tended to prefer
other Legacy OS's

– At least in the enterprise market...

● At the time, few x86 servers had more than 8-
16 CPU's, so there was less need to scale
beyond that

● Linux was/is the king of scale-out computing

And so matters remained for 4-5
years

● (In an industry where 2 years == infinity)
● Rise of Linux on the embedded and mobile

market
● CPU frequencies stopped doubling every 12

months
● CPU manufacturers have started putting 2, 4,

8+ cores in a socket
– My desktop at work has 12 cores and it's not

that expensive...

So here we are in 2010

● Scalability has started to matter again
– Servers with 4 sockets aren't all that rare

– And with 8 cores/socket, that means 32 CPU's
will soon be a common configuration for
Linux

● Time for kernel programmers to rediscover the
lessons of scalability tuning

● Time for application programmers to start
thinking about multi-threaded programming

Ext3 – Good enough scalibility

● Many x86 Linux workloads don't really stress
the file system

– Hit other bottlenecks first

● Enterprise databases tend to use Direct I/O to
preallocated files

● Ext3 doesn't do well on head-to-head
benchmark competitions

– But most system administrators didn't care
● It worked
● Easy to service if things went wrong

Ext4 Scalability

● The story starts in April 2010
– IBM real-time team was improving file system

when when CONFIG_RT_PREEMPT is
enabled

– They noticed a minor problem with dbench...

Oprofile Report

27.39% dbench [kernel] [k]
_raw_spin_lock_irqsave

 |

 |--90.91%-- rt_spin_lock_slowlock

 | rt_spin_lock

 | |

 | |--66.92%-- start_this_handle

 | | jbd2_journal_start

 | | ext4_journal_start_sb

 | | |

...

 | |

 | |--32.31%-- jbd2_journal_stop

 | | __ext4_journal_stop

 | | |

 | | |--92.86%--
ext4_da_write_end

 | | |
generic_file_buffered_write

What do the locks protect?

● Fortunately, this was well documented in the
jbd/jbd2 header files

– The j_state_lock protects fields in the journal
structure

– The t_handle_lock protects fields in the
transaction handle structure

● The jbd2_journal_start() and
jbd2_journal_stop() functions were taking both
locks

A quick jbd2 lesson...

● Transactions are expensive → group multiple
file system operations into a single transaction

– Transaction commits happen every 5 seconds
or when the transaction or the journal is full

● Each file system operation is bracketed by a
jbd2_journal_{start,stop}() call

– jbd2_journal_start() gets passed a worst-case
estimate of how many blocks will be modified

● Checks to see if a new transaction must be
started

Removing unnecessary locking

● Turns out in jbd2_journal_stop() was taking
the j_state_lock spinlock, but...

– It was not touching anything protected by that
lock

● Removing it resulted in an immediate
improvement for the real-time folks

● Eric Whitney from HP ran some tests using a
large (48 core) AMD system with hw RAID....

j_state patch results

j_state patch results, II

Can we do better?

● While benchmarking Eric Whitney also took
measurements using an even more powerful
lock profiling tool: lock_stat

– Enabled via CONFIG_LOCK_STATS

– Start profiling: echo 1 >
/proc/sys/kernel/lock_stat

– Stop profiling: echo 0 >
/proc/sys/kernel/lock_stat

– Get results: cat /proc/lock_stat

– Clear statistics: 0 > /proc/lock_stat

lock_stat eye chart

 class name con-bounces
contentions waittime-min waittime-max
waittime-total acq-bounces acquisitions
holdtime-min holdtime-max holdtime-total

--
--

 &(&journal->j_state_lock)->rlock#2:
99868941 114503908 0.10
1949243.34 109274601519.1 114792575
115009746 0.00 15221.59
1037547183.11

 &(&journal->j_state_lock)->rlock#2
57217260 [<ffffffffa032ed19>]
start_this_handle+0xb9/0x540 [jbd2]

 &(&journal->j_state_lock)->rlock#2
57274235 [<ffffffffa032e5e4>]
jbd2_journal_stop+0x164/0x2c0 [jbd2]

 &(&journal->j_state_lock)->rlock#2 312
 [<ffffffffa0337fad>] kjournald2+0x22d/0x240
[jbd2]

 &(&journal->j_state_lock)->rlock#2 353
 [<ffffffffa03305e1>]
jbd2_journal_commit_transaction+0xb1/0x15d0
[jbd2]

 &(&journal->j_state_lock)->rlock#2
51029210 [<ffffffffa032ed19>]
start_this_handle+0xb9/0x540 [jbd2]

 &(&journal->j_state_lock)->rlock#2
63447848 [<ffffffffa032e5e4>]
jbd2_journal_stop+0x164/0x2c0 [jbd2]

 &(&journal->j_state_lock)->rlock#2 228
 [<ffffffffa0337fad>] kjournald2+0x22d/0x240
[jbd2]

 &(&journal->j_state_lock)->rlock#2 250
 [<ffffffffa03305e1>]
jbd2_journal_commit_transaction+0xb1/0x15d0
[jbd2]

lock_stat results (after j_state patch)

 lock con-bounces contentions waittime-
max waittime-total

 acq-bounces acquisitions holdtime-
max holdtime-total

j_state_lock 60044534 64207387
2334498.88 65679240103.52

 66614119 71942836
53365.97 812877772.83

t_handle_lock 16221754 16230567
4919.93 64694019.69

 97810845 108503597
4886.57 387422214.20

i_data.tree_lock 11933618 12675467
28650.31 16952331.67

 19849684 670525261
90889.89 333178882.08

(Reformatted, from large_file_create, 192 threads;
time is in nanoseconds)

j_state_lock details

 50052861 start_this_handle+0xb9/0x540
[jbd2]

 14148330
jbd2_log_start_commit+0x2b/0x50 [jbd2]

 102 kjournald2+0x22d/0x240 [jbd2]

 175
jbd2_journal_commit_transaction+0xb1/0x15d0
[jbd2]

 48224598 start_this_handle+0xb9/0x540
[jbd2]

 15970581
jbd2_log_start_commit+0x2b/0x50 [jbd2]

 137
jbd2_journal_commit_transaction+0xb1/0x15d0
[jbd2]

 235
jbd2_journal_commit_transaction+0x4a7/0x15d0
[jbd2]

t_handle_lock details

 13912339
jbd2_journal_stop+0x15c/0x280 [jbd2]

 2318336 start_this_handle+0xdc/0x540
[jbd2]

 6
jbd2_journal_commit_transaction+0x127/0x15d0
[jbd2]

 3562931
jbd2_journal_stop+0x15c/0x280 [jbd2]

 12667736 start_this_handle+0xdc/0x540
[jbd2]

 14
jbd2_journal_commit_transaction+0x127/0x15d0
[jbd2]

What to do, what to do....

● Use atomic_t variables to avoid taking
t_handle_lock

– For statistics (are the statistics really needed?)

– Journal accounting
● # of handles
● # of blocks modified to be stored in the journal

● Use a read/write lock for j_state_lock
– Most of the time, starting and stopping handles

only needs a read lock for j_state_lock

● With these changes, jbd2 handles can now be
started and stopped in parallel

Journal scalability benchmarks

Journal scalability benchmarks, II

lock_stat results after patch

 class name con-bounces contentions
waittime-max waittime-total

 acq-bounces acquisitions
holdtime-max holdtime-total

blk queue_lock 25476870 25509021
1047374.56 7611283803.70

 26031778 58491403
891590.17 307965771.19

j_state_lock-W 12374549 12459235
5137551.04 14262268154.07

 25876450 32611487
354360.76 56047033.07

j_state_lock-R 8126600 8468812
353206.76 219760538.21

 46197634 56002788
167641.21 360044910.25

i_data tree_lock 1049732 1060539
236.92 1088578.62

 5434319 319400976
293.21 149076440.33

large file creates, 192 threads, ext4 w/ patches

Queue lock details

 23935236 __make_request+0x54/0x4b0

 195527 scsi_request_fn+0x3de/0x540

 9791
generic_unplug_device+0x26/0x50

 209210
scsi_device_unbusy+0xa5/0xe0

 17483
generic_unplug_device+0x26/0x50

 23794087 __make_request+0x54/0x4b0

 257594 scsi_request_fn+0x3de/0x540

 235579 __make_request+0xaf/0x4b0

j_state_lock details

 12457104
jbd2_log_start_commit+0x2b/0x60

 8468910 start_this_handle+0x98/0x540

 2 kjournald2+0x204/0x220

 9
jbd2_journal_commit_transaction+0x36a/0x14a0

 3804131 start_this_handle+0x98/0x540

 17119236
jbd2_log_start_commit+0x2b/0x60

 1 kjournald2+0x204/0x220

 517
jbd2_journal_commit_transaction+0x1d8/0x14a0

Now what?

● The top lock (as of 2.6.36) is no longer a lock
in the jbd2 layer

– The primary contention point left shows up
when we need to start a new commit, and
have to wait for all outstanding handles to
finish → unavoidable

● Now the primary problem is caused by how
ext4 submits its out to the block I/O layer

Ext4 Buffered Writes

● Are submitted 4k at a time...
– … buffered reads use mpage_readpages()

– … writes can't due to journaling requirements

● The writes get merged back together by the
block queue layer, but wastes CPU time and
locking overhead

– Makes blktraces very large

– I/O statistics can be confusing
● Are stats pre-merge or post-merge

A small matter of programming...

● Implementation in fs/ext4/page_io.c
– Provides an (almost) drop-in replacement for

block_write_full_page(), named
ext4_bio_write_page()

– ext4_io_submit writes all of the batched pages

● Required a massive overhaul of the bottom
half-of the ext4 buffered write submission path

– Everything from mpage_da_submit_io() on
down...

And the results...

Results, II

Unfortunately not quite done

● Bug reported when using dm_crypt and
postgres

– Causes data corruption

Unfortunately not quite done

● Bug reported when using dm_crypt and
postgres

– Causes data corruption

● Enhancement disabled before 2.6.37 released
– Can be re-enabled via mblk_io_submit mount

option

● Now all we have to do is find the bug....

Summing up...

● We need to pay attention to SMP scalability
– Requires careful thinking about multi-threading

● Harder to debug; lots of potential for race
conditions

● Performing tuning can be tricky

● Techniques for Performance
– Atomic variables

– Read/write locking

– Finer-grain locking

– Batch work together

For Userspace, too!

● Can userspace applications do the same
thing?

– atomic_t variables can work if you import the
headers

– Use pthread mutexes
● Linux futex can speed up things

– Don't use spinlocks!

● Multithreading tools for userspace:
– Valgrind's drd tool to find data races

– Lennart Poettering's mutrace

Picture from Paul Downey, http://www.flickr.com/photos/psd/2086641/

