(Scaling the Linux Kernel (Revisited):
Using Ext4 as a Case Study

Theodore Ts'o
Google
January 25, 2011

Back to the Future!

r Back to the Future!

In 2001...

* Linux 2.4

» IBM had just announced it was going to invest
a billion dollars into Linux

» Linux had SMP, but it was barely scalable to 4
CPU's

- What does this mean?
- Why does this matter?

When one CPU is not enough

SMP: For when one CPU isn't
enough

Back then, one CPU was a lot slower
6 Moores Law doublings in the last 9 years

People who needed more computing power
than that might buy a Sequent system with 8,
16, or 32 Pentiums

Then as now, SMP is expensive

Coordinating a large number of sockets is
expensive

What if two CPU's want to read/write to the
same memory location?

How is cache coherency handled?

The interconnect between between the CPU's
IS critically important

Cheating with NUMA (Non-uniform Memory
Access)

A 4 CPU machine costs far more than 4 times
single CPU machines

N

I spent for 16 CPU's
—12~. FFFFFFF

/
f

Ry

/'t \ FFFFFFF
d/ LN\ FFFFFF
\ FFFUU

Uuuu

uuuu
Uuuu

s UUUU
UUUU-

I expect To get 16 CPU'8|

Measuring SMP scalability

» Run one or more benchmarks using a single
CPU

- Volanomark
- FSCache

- Netperf

- SpecWeb99
- SPEC sdet

- 10ZONE

- TPC-C/D/H

Measuring SMP scalability

Run one or more benchmarks using a single
CPU

Now run the same benchmarks on a N CPU
machine

S = (score on 1 CPU / score on N CPU's)

The OS is said to have a scalability of S out of
N on that benchmark

Example: “Linux 2.6 has scales to 12 out of 16
CPU's on the fooblatz benchmark”

Scalability is HARD

12 out 16 CPU's is actually considered pretty
good for some benchmarks

But that means we're only using 75% of a
machine that costs way more than 16 times a
single CPU server!

At the time, Linux 2.4 barely scaled to 4 CPU's
on many benchmarks

Well less than 3x the single CPU benchmark
score

On some benchmarks, Linux was actually
slower on a 4 CPU machine (negative
scalability!)

Linux Scalability Effort

» Spearheaded by IBM's Linux Technology
Center

- Other companies:

- SG

* Intel

* VA Linux

 University of Michigan CITI

Linux Scalability Effort

Spearheaded by IBM's Linux Technology
Center

Weekly conference calls

Regular (weekly/monthly) benchmark
measurements by a performance team

Developers stared at CPU and lock profiles to
find and then fix bottlenecks

Wash. Rinse. Repeat.

This went on for 2-3 years, and then victory
was declared and everyone went home

Linux scalability as of 2003-4

» Good, but certainly not perfect

- Scaled to 6-7 out of 8 CPU's on most
benchmarks

- Scaled to at least 12 out 16 CPU's on many
benchmarks

- Scaled to an acceptable number of CPU's on 32
CPU's

» Why did people stop?

Linux succeeded wildly on x86

... but not necessarily on other platforms

Turned out people who spend $$$ on a high-
end Sparc or Power server tended to prefer
other Legacy OS's

At least in the enterprise market...

At the time, few x86 servers had more than 8-
16 CPU's, so there was less need to scale
beyond that

Linux was/is the king of scale-out computing

And so matters remained for 4-5
years

(In an industry where 2 years == infinity)

Rise of Linux on the embedded and mobile
market

CPU frequencies stopped doubling every 12
months

CPU manufacturers have started putting 2, 4,
8+ cores In a socket

My desktop at work has 12 cores and it's not
that expensive...

So here we are in 2010

Scalability has started to matter again

Servers with 4 sockets aren't all that rare

And with 8 cores/socket, that means 32 CPU's
will soon be a common configuration for
Linux

Time for kernel programmers to rediscover the
lessons of scalability tuning

Time for application programmers to start
thinking about multi-threaded programming

32 cores onaisocket

S ad A >

Ext3 — Good enough scalibility

Many x86 Linux workloads don't really stress
the file system

Hit other bottlenecks first

Enterprise databases tend to use Direct I/O to
preallocated files

Ext3 doesn't do well on head-to-head
benchmark competitions

But most system administrators didn't care

It worked
Easy to service if things went wrong

Ext4 Scalability

» The story starts in April 2010

- IBM real-time team was improving file system
when when CONFIG_RT_PREEMPT is
enabled

- They noticed a minor problem with dbench...

We're spendings

it 4
g

Show much imeRe spinlocks?:

| Oprofile Report

27.39% dbench [kernel] [K]
_raw_spin_lock irgsave

--90.91%-- rt_spin_lock slowlock
rt_spin_lock

--66.92%-- start_this handle
jod2_journal_start

ext4 journal start sb

e —

What do the locks protect?

Fortunately, this was well documented in the
jbd/jbd2 header files

The j _state lock protects fields in the journal
structure

The t_handle_lock protects fields in the
transaction handle structure

The jbd2_journal_start() and
jbd2_journal stop() functions were taking both
locks

A quick jbd2 lesson...

Transactions are expensive — group multiple
file system operations into a single transaction

Transaction commits happen every 5 seconds
or when the transaction or the journal is full

Each file system operation is bracketed by a
jbd2_journal {start,stop}() call

jbd2_journal_start() gets passed a worst-case
estimate of how many blocks will be modified

Checks to see if a new transaction must be
started

Removing unnecessary locking

Turns out in jbd2_journal stop() was taking
the | state lock spinlock, but...

It was not touching anything protected by that
lock

Removing it resulted in an immediate
improvement for the real-time folks

Eric Whitney from HP ran some tests using a
large (48 core) AMD system with hw RAID....

| state patch results

Throughput CPU Utilization Attributed to Kernel
large_file_creates on 2.6.34 large_file_creates on 2.6.34
100000 100
L i L |l extd i
4 with j lock h
90000 90_: i:-: with |_state_lock patc
80000 80
a0}
® .
B exid ~ 70
70000 W extd with |_state_lock patch] B
2 B xis 1 E., "
8 60000 o 60
&] g |
g 8 50
& 50000 g
g ' g |
S 40000 = 40
= - £
30000 2. 30
_ 3& -
20000 20
10000 10
Hom
0 1 48 192 0 1 48 192
Number of ffsb threads Number of ffsb threads

e ———— e

Transactions/second

13000
12000
11000
10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

| state patch results, Il

Throughput
random_writes on 2.6.34

B ext4
B ext4 with |_state_lock patch
B xfs

48 192
Number of ffsb threads

10

% system time reported by ffsb / 48
o

CPU Utilization Attributed to Kernel

random_writes on 2.6.34

| W extd4 with |_state_lock patch

B ext4

B xis

—

48
Number of ffsb threads

192

——— .

Can we do better?

While benchmarking Eric Whitney also took
measurements using an even more powerful
lock profiling tool: lock stat

Enabled via CONFIG_LOCK_ STATS

Start profiling: echo 1 >
/proc/sys/kernel/lock stat

Stop profiling: echo 0 >
/proc/sys/kernel/lock_stat

Get results: cat /proc/lock_stat
Clear statistics: 0 > /proc/lock_stat

lock_stat eye chart

class name con-bounces
contentions waittime-min waittime-max
waittime-total acg-bounces acquisitions
holdtime-min holdtime-max holdtime-total

&(&journal->|_state lock)->rlock#2:
99868941 114503908 0.10
1949243.34 109274601519.1 114792575

N AACOOOTAL e VOO AEOOA-O

lock stat results (after | _state patch)

lock con-bounces contentions waittime-
max waittime-total

acg-bounces acquisitions holdtime-
max holdtime-total

|_state lock 60044534 64207387
| 2334498.88 65679240103.52

66614119 71942836
53365.97 812877772.83

t handle lock 16221754 16230567
49190 QR 4604010 RO —

i state lock details

50052861 start_this _handle+0xb9/0x540
[jbd2]

14148330
jbd2_log start commit+0x2b/0x50 [jbd2]

102 kjournald2+0x22d/0x240 [jbd2]

175
jbd2_journal_commit_transaction+0xb1/0x15d0
[jbd2]

t handle lock details

13912339
jbd2_journal stop+0x15¢c/0x280 [jbd2]

2318336 start_this _handle+0xdc/0x540
[jbd?2]
: 6
jbd2_journal_commit_transaction+0x127/0x15d0
[jbd?2]

R ‘2 memm S AN . . —] B e =m

What to do, what to do....

Use atomic_t variables to avoid taking
t handle lock

For statistics (are the statistics really needed?)

Journal accounting
of handles
of blocks modified to be stored in the journal

Use a read/write lock for | _state lock

Most of the time, starting and stopping handles
only needs a read lock for | _state lock

With these changes, jbd2 handles can now be
started and stopped in parallel _—

Journal scalability benchmarks |

Throughput Kernel CPU Utilization

large_file_creates on 2.6.35 large_file_creates on 2.6.35
100000 100
90000 90
80000 80
70000 70

extd
ext4 nojournal

60000

[s'a]
<
e
0
J =
L
5 3
&2 = ext4 patched
5 50000 8 xfs
3 e T
€ 40000 = 40
e § T
30000 % 30
0 L
20000 ext4 nojournal 20
ext4 patched i
10000 xf 10
0 0 48 192
Number of ffsb threads Number of ffsb threads

Transactions/second

Journal scalability benchmarks, |l

14000
13000
12000
11000
10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

Throughput
random_writes on 2.6.35

extd
ext4 nojournal

ext4 patched
xfs

Number of ffsb threads

% system time reported by fisb / 48

Kernel CPU Utilization
random_writes on 2.6.35

ext4
ext4 nojournal
ext4 patched
xfs

48
Number of ffsb threads

lock stat results after patch

class name con-bounces contentions
walittime-max waittime-total

acg-bounces acquisitions
holdtime-max holdtime-total

blk queue lock 25476870 25509021
1047374.56 7611283803.70

26031778 58491403
891590.17 307965771.19

|_state_lock-W 12374549 12459235
“_R1R7551 04 14262268154 07 —

Queue lock details

23935236 __make_request+0x54/0x4b0
195527 scsi_request fn+0x3de/0x540
9791
generic_unplug_device+0x26/0x50
209210

| scsi_device_unbusy+0xa5/0xe0

17483
generic_unplug_device+0x26/0x50

23794087 _make reauest+0x54/0x4b0

i state lock details

12457104
jbd2_log start commit+0x2b/0x60

8468910 start_this_handle+0x98/0x540
2 kjournald2+0x204/0x220

9
| Jbd2_journal_commit_transaction+0x36a/0x14a0

3804131 start_this _handle+0x98/0x540

17119236
“__ibd2 loa _start commit+0Ox2b/0x60 —

. —
e e, ——— —

fheitop lockis

_.\

-
- =
[; .

isnol injhdz
IS noJongerinjhu2)

Now what?

The top lock (as of 2.6.36) is no longer a lock
in the jbd2 layer

The primary contention point left shows up
when we need to start a new commit, and
have to wait for all outstanding handles to
finish — unavoidable

Now the primary problem is caused by how
ext4 submits its out to the block I/O layer

are sent 4k at a time:to.the bio layer

Ext4 Buffered Writes

Are submitted 4k at a time...

... buffered reads use mpage_readpages()
... writes can't due to journaling requirements

The writes get merged back together by the

block queue layer, but wastes CPU time and
locking overhead

Makes blktraces very large
/O statistics can be confusing

Are stats pre-merge or post-merge

L=

A small matter of programming...

Implementation in fs/ext4/page io.c

Provides an (almost) drop-in replacement for
block write_full_page(), named
ext4 bio write _page()

ext4 1o _submit writes all of the batched pages

Required a massive overhaul of the bottom
half-of the ext4 buffered write submission path

Everything from mpage_da_submit_io() on
down...

And the results...

Kernel CPU Utilization

Throughput large_file_creates on 2.6.36-rc6
large_file_creates on 2.6.36-rc6 100 _
[exts
170000— B exid | 90+ “ git&t paf;ched
160000 # ext4 patched 1 B ext4 nojournal _
| ™ extd nojournal | % ext4 nojournal patched
150000: # ext4 nojournal patched 4 g0l W exs
| W ext3 W xfs |
140000_ - i;‘s 1 o I
130000 | - A E z 70 g
: 7 % B o /
8110000 ’4 g % 1 8 g
€ 100000 —— 7 AR £ ?
@ B %7 %7 g s0 ?
2 90000 g7/ 2 21 B & 50f %
9 M iy 7 % 2 2
= 80000 Z 7 22 B g . /
3 - B % 7 % 7 = ?,
2 70000 % 7 2 B e | é
g i 7 7 é 7 % Z
= 60000 —@787 x 72 7 K 2 30 .
- R % 7 7 7 & 30 %
50000 —@717 7 2 B o ?
N | A %27 20 %
40000 Z ? | - 17 7 7 i _ %
7 7 Z Z
o 2l K 10 X
20000 W1 N M g
d/ |/l W .
10000‘%¢¢’¢%¢‘ 0 1 48 192
0 1 48 192 Number of fisb threads

Number of ffsb threads

Results, |

Throughput Kernel CPU Utilization
random_writes on 2.6.36-rc6 random_writes on 2.6.36-rc6
90000 : 50
85000 o B exi4 — - M extd .
80000_ g o git‘l‘ patched __ 45_ 7 extd pa!:Ched
L é B extd nojournal i i B extd no!ournal |
75000 ’ I//’ % ext4 nojournal patched — 7 ext4 nojournal paiched
) v B ext3 T 40H M ext3
700‘0‘0_—2 2 B s] g | H xfs
650004717 . S 3
60000787 . 277
§ 5500047 : 2 50
$ 50000 ’/' 7 3 |
2 N v f 7 8_
R | 8 25
s 2 7 e
§ 40000 ;; ? T e ®
& 3500071 7 787 %n’ £ 5o
= L ZN7 787 i
= Z Z A7 N7 £ |
30000_ 707 7 f 7207 i L
ZN7 A Vi ZN7 = 15
25000 % 7 ,/f % 7
il 0 - 7% - Z87 B L T
20000 — % 7 %7 707
5 1H 1H 1E 0
15000 — @71/ 7 27 I
a7’ B MW K .
10000 7 7 7z 7 5 Z
5000_f%¢§g,é_ I 2 |
LN WO VN 0 7
1 48 192 1 48

Number of ffsb threads Number of ffsb threads

Unfortunately not quite done

» Bug reported when using dm_crypt and
postgres

— Causes data corruption

N

Unfortunately not quite done

Bug reported when using dm_ crypt and
postgres

Causes data corruption
Enhancement disabled before 2.6.37 released

Can be re-enabled via mblk_io_submit mount
option

Now all we have to do is find the bug....

Summing up...

We need to pay attention to SMP scalability

Requires careful thinking about multi-threading

Harder to debug; lots of potential for race
conditions

Performing tuning can be tricky
Techniques for Performance
Atomic variables
Read/write locking
Finer-grain locking
Batch work together

For Userspace, too!

Can userspace applications do the same
thing?
atomic_t variables can work if you import the
headers

Use pthread mutexes
Linux futex can speed up things
Don't use spinlocks!

Multithreading tools for userspace:

Valgrind's drd tool to find data races
Lennart Poettering's mutrace

Picture from Paul Downey, http://www.flickr.com/photos/psd/2086641/

———— e —

