
Making Production-Ready Filesystems:
A case study using Ext4

Theodore Ts'o
Google

January 20, 2010
13:30

What makes a function/library
hard to test?

● Premature Optimization
● Large Amounts of Internal State
● Lots of parallelism

What makes a file system
hard to make robust?

● Optimization demanded for many workloads
● A file system's job is to store a lot of state
● Lots of parallelism

File systems are like fine wine...

Meet the ZFS team...

Meet the ZFS team...

Where are we then with ext4?

● Renamed from ext4dev to ext4 in 2.6.28
(December 25, 2008)

● Shipping in community distributions
– Fedora 11, Ubuntu 9.10, Open SuSE

– In RHEL 5, SLES 11 as technology preview

● Hopefully will be showing up in upcoming
enterprise/LTS distributions

● Widespread adoption in data centers 12+
months later

Characterizing recent ext4 changes

V2.6.29 v2.6.30 v2.6.31 v2.6.32 v2.6.33
0

20

40

60

80

100

120

performance
feature
cleanup
bugfix

Break down of bugfixes

DoS
race
sync
leaks
misc

Where were the bug fixes?

● Interaction between the new allocator and
online resize

● Preallocation races and ENOSPC issues
● On-line defrag
● Fiemap
● Quota
● No Journal mode

What were the new features?

● New tracepoints and features for perfomance
tuning / debugging

● Work around non-fsync'ing applications
● On-line defrag
● Fiemap
● Quota
● No-journal mode

Some example bugs that we found

● Fix race in ext4_inode_info.i_cached_extent
– Fixed in 2.6.30

– “If two CPU's simultaneously call
ext4_ext_get_blocks() at the same time, there
is nothing protecting the cached_extent
structure from being used and updated at the
same time. This could potentially cause the
wrong location on disk to be read or written to,
including potentially causing the corruption of
the block group descriptors and/or inode
table.”

How did this bug slip by?!?

● Was part of code donation from Lustre
– In production use for years there

– Large code donation; lack of locking missed in
the code review

– Used the file system as an object store
● Single threaded reads and writes

● Turns out most file system writes tend to be
single-threaded.

– I was using ext4 in production for 9 months;
never noticed the problem

Some example bugs that we found

● Fix race in ext4_inode_info.i_cached_extent
● jbd2: fix race between write_metadata_buffer

and get_write_access
– Fixed in 2.6.31

– “Jbd2_journal_write_metadata_buffer() calls
jbd_unlock_bh_state(bh_in) too early; this
could potentially allow another thread to call
get_write_access on the buffer head, modify
the data, and dirty it, and allowing the wrong
data to be written into the journal....”

OMG! Sounds serious...

● “...Fortunately, if we lose this race, the only time
this will actually cause filesystem corruption is if
there is a system crash or other unclean
shutdown of the system before the next commit
can take place.”

● Turns out this bug was in ext3 too....

Some example bugs that we found

● Fix race in ext4_inode_info.i_cached_extent
● jbd2: fix race between write_metadata_buffer

and get_write_access
● Remove bogus BUG() check in ext4_bmap()

– Fixed in 2.6.29

– “The code to support no journal ext4 operation
added a BUG to ext4_bmap() which fired if
there was no journal and the JDATA bit was
set in the i_state field. This caused running
the filefrag program (which uses the FIMBAP
ioctl) to trigger a BUG()”

Some example performance fixes

● avoid unnecessary spinlock in critical POSIX
ACL path

– “If a filesystem supports POSIX ACL's, the VFS
layer expects the filesystem to do ACL checks
on any files not owned by the caller, and it
does this for every single pathname
component that it looks up. That obviously
can be pretty expensive if the file system isn't
careful about it, especially with locking. That's
doubly sad, since most files don't have any
ACL's.”

Some example performance fixes

● avoid unnecessary spinlock in critical POSIX
ACL path

● Fix discard of inode prealloc space with
delayed allocation

– “With delayed allocation we can not discard
inode prealloc space during file close, since
still have dirty pages for which we haven't
allocated blocks yet. With this fix after each
get_blocks request we check whether we
have no more delalloc blocks and if there are
no open fd's for write. If so, we can release
the inode prealloc space.”

Some example performance fixes

● avoid unnecessary spinlock in critical POSIX
ACL path

● Fix discard of inode prealloc space with
delayed allocation

● Adjust ext4_da_writepages() to write out larger
contiguous chunks

– “Work around problems in the writeback code to
force out writebacks in larger chunks than just
4mb, which is just too small...”

Conclusion

● File systems are easy!
– We have 66 of them in the kernel sources

– Lots of generic library support code; just provide
a bmap function and add water...

Conclusion

● File systems are easy!
● File systems are hard!

– General purpose file systems have to work well
on many different workloads

– Users want high performance out of their file
system

– Many processes will be hitting it at the same
time.

Conclusion

● File systems are easy!
● File systems are hard!
● Making a production-ready, general purpose file

system takes longer and takes more effort than
you expect

– Labor of love

– Justifying it from a business perspective can be
challenging

YouTube Links

● http://www.youtube.com/watch?v=oSs6DcA6dFI
● http://www.youtube.com/watch?v=A6P1ifGjvEE

http://www.youtube.com/watch?v=oSs6DcA6dFI
http://www.youtube.com/watch?v=A6P1ifGjvEE

