
Linux Writeback Queues

Wu Fengguang
<wfg@linux.intel.com>

November 4, 2008

<wfg@linux.intel.com>

Outline

...1 writeback queues
bugs => solutions => principles

...2 writeback policies
location ordering
lazy writeback

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 2 / 55

the writeback mess

linux-2.6.22 $ wc -l fs/fs-writeback.c mm/page-writeback.c
704 fs/fs-writeback.c

1027 mm/page-writeback.c
1731 total

That code does so many different things it ain’t funny.
This is why when one thing gets changed, something else
gets broken.

- Andrew Morton

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 3 / 55

page cache writeback

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 4 / 55

pdflush threads

.
2∼8 kernel threads, writing back dirty data in background..

.. ..

.

.

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 198 0.0 0.0 0 0 ? S 08:21 0:00 [pdflush]
root 199 0.0 0.0 0 0 ? S 08:21 0:00 [pdflush]

.expected function..

.. ..

.

.

on every 5s:
for each dirty old inode (i.e. now - dirtied_when > 30s):

sync inode meta-data & pages to disk

5s: tunable via /proc/sys/vm/dirty_writeback_centisecs
30s: tunable via /proc/sys/vm/dirty_expire_centisecs

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 5 / 55

page cache organization

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 6 / 55

inode list organization

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 7 / 55

writeback iterations

Writeback task as 3-level loops:
.

.. ..

.

.

for all super_blocks
for all dirty inodes (expired)

for all dirty pages
sync page

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 8 / 55

dirty-expire-sync time line

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 9 / 55

2-queue park-splice-work model

.data structure..

.. ..

.

.

two /ordered/ queues per superblock:
- s_dirty: park imporing dirty inodes
- s_io: hold dirty inodes to be worked in this wakeup

.work flow..

.. ..

.

.

0) s_dirty accepting newly dirtied inodes (as always!)

1) splice s_dirty to s_io
2) iterate through *old* dirty inodes in s_io for writing back
3) splice remained young dirty inodes in s_io back to s_dirty

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 10 / 55

2-queue park-splice-work model: example

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 11 / 55

fairness issue: large file delays small files

file 1 is 1GB
file 2,3 are 1KB

⇒
file 1 will delay file 2,3 for too long time.

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 12 / 55

live-lock issue: busy file blocks other files

file 1 is being written to fast enough

⇒
the following files could be blocked for a long time, if not
for ever.

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 13 / 55

solution: striped syncing

sync at most 4MB/file at a time
move partially-synced files to the tail of s_dirty, so that
they can be served in the next round

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 14 / 55

lack-of-writeback problem
LKML message from David Chinner <dgc@sgi.com> on Feb 2006:

The workload involves ~16 postmark threads running in the background
each creating ~15m subdirectories of ~1m files each. The idea is
that this generates a nice, steady background file creation load.
Each file is between 1-10k in size, and it runs at 3-5k creates/s.

The disk subsystem is nowhere near I/O bound - the luns are less than 10%
busy when running this workload, and only writing about 30-40MB/s aggregate.

The problem comes when I run another thread that writes a large single
file to disk. e.g.:

dd if=/dev/zero of=/mnt/dgc/stripe/testfile bs=1024k count=4096

to write out a 4GB file. Now this goes straight into memory (takes
about 7-8s) with some writeback occurring. The result is that approximately
2.5GB of the file is still dirty in memory.

It then takes over an hour to write the remaining data to disk. The
pattern of writeback appears to be that roughly every
dirty_expire_centisecs a chunk of 1024 pages (16MB on altix) are
written to for that large file, and it is done in a single flush.

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 15 / 55

lack-of-writeback problem: short version

large dirtied file
continuously emerging small dirty files

⇒
large file writeback slowed down to 1024 pages / 30 sec

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 16 / 55

lack-of-writeback problem: reasoning

s_dirty goes out-of-order when (4) follows (2),
file 1 blocked until expiration of file 6.

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 17 / 55

lack-of-writeback problem: proposal

inodes need more work =⇒ s_more_io

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 18 / 55

writeback code

.

.. ..

.

.

splice s_more_io to s_io.tail
splice s_dirty to s_io

for each inode on s_io
if young, break
writeback inode

if inode needs more work, put on s_more_io

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 19 / 55

writeback code - more complete
.

.. ..

.

.

1 + loop
2 + nr_to_write = MAX_WRITEBACK_PAGES(=1024)
3 + for each super block
4 + if s_io is empty
5 splice s_more_io to s_io.tail
6 move expired s_dirty inodes to s_io
7 for each inode on s_io
8 writeback up to nr_to_write pages
9 if inode needs more work, put on s_more_io

10 + if pages skipped, put back to s_dirty
11 + nr_to_write -= pages written
12 + break if nr_to_write <= 0
13 + break if nr_to_write <= 0
14 + break if nr_to_write > 0

line 4: starvation/livelock prevention
line 10/14: source of the next two bugs

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 20 / 55

starvation/live-lock prevention
Let A = large file; B,C,D,E,F,G,. . . = small files.
.no line 4..

.. ..

.

.

sync 4MB of A; draw more files;
sync 4MB of A; draw more files;
sync 4MB of A; draw more files;
sync 4MB of A; draw more files;
sync 4MB of A; draw more files;
... // A starves the following files
sync B,C,D,E,F,G,...; draw more files
... // livelock on imporing expired dirty files

.with line 4..

.. ..

.

.

sync 4MB of A; sync B,C;
sync 4MB of A; sync D,E;
sync 4MB of A; sync F,G;
...
done with this superblock’s dataset

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 21 / 55

lack-of-writeback-2 problem

% ls -his /var/x
847824 200M /var/x

% dmesg|grep 847824 # generated by a debug printk
[529.263184] redirtied inode 847824 line 548
[564.250872] redirtied inode 847824 line 548
[759.198568] redirtied inode 847824 line 548

line 548 in fs/fs-writeback.c:
543 if (wbc->pages_skipped != pages_skipped)
544 /*
545 * writeback is not making progress due to locked
546 * buffers. Skip this inode for now.
547 */
548 redirty_tail(inode);
549

More debug efforts show that __block_write_full_page()
never has the chance to call submit_bh() for that big dirty file:
the buffer head is *clean*. So basicly no page io is issued by
__block_write_full_page(), hence pages_skipped goes up.

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 22 / 55

lack-of-writeback-2 solution
.

.. ..

.

.

the comment in __block_write_full_page():
1713 /*
1714 * The page was marked dirty, but the buffers were
1715 * clean. Someone wrote them back by hand with
1716 * ll_rw_block/submit_bh. A rare case.
1717 */

pages_skipped accounts ‘locked buffer’, but here is ‘clean buffer’!
So fix it with:
.

.. ..

.

.

--- linux-2.6.23-rc2-mm2.orig/fs/buffer.c
+++ linux-2.6.23-rc2-mm2/fs/buffer.c
@@ -1713,7 +1713,6 @@ done:

* The page and buffer_heads can be released at any time from
* here on.
*/

- wbc->pages_skipped++; /* We didn’t write this page */
}
return err;

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 23 / 55

lack-of-writeback-3

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 24 / 55

lack-of-writeback-3 problem

.

.. ..

.

.

s_io s_more_io

1) 100M,1K 0
2) 1K 96M
3) 0 96M

1) initial state with a 100M file and a 1K file
2) 4M written, nr_to_write <= 0, so write more
3) 1K written, nr_to_write > 0, no more writes (BUG!)

nr_to_write > 0 in (3) fools upper layer to think that data have all been
written out. The big dirty file is actually still sitting in s_more_io.

We have to return when a full scan of s_io completes.
So nr_to_write > 0 does not necessarily mean that ”all data are written”.

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 25 / 55

lack-of-writeback-3 solution

Introduce more_io flag to indicate that some superblock(s)
have more work in s_more_io;
temporarily yielded to give other superblocks a chance.

⇒
files get synced fast, finally! (?)
ext2/reiserfs/jfs goes 100% iowait . . .

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 26 / 55

dirty flag & tag - rationale

LRU reclaim triggers page-by-page writeback

⇒
address space sequential writeback is desired

⇒
tag dirty pages in radix tree to speedup lookup

⇒
dirty pages are

defined by PG_dirty
searchable by PAGECACHE_TAG_DIRTY

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 27 / 55

dirty flag & tag - demo

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 28 / 55

dirty flag & tag - protocol

redirty_page_for_writepage
__set_page_dirty_nobuffers

if !TestSetPageDirty
set PAGECACHE_TAG_DIRTY

set_page_writeback
test_set_page_writeback

if !TestSetPageWriteback
set PAGECACHE_TAG_WRITEBACK

if !PageDirty
clear PAGECACHE_TAG_DIRTY

end_page_writeback
test_clear_page_writeback

if TestClearPageWriteback
clear PAGECACHE_TAG_WRITEBACK

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 29 / 55

dirty flag & tag - example

set_page_dirty (page is locked except called from zap_pte_range())
PG_dirty

(infinite small time)
PG_dirty PAGECACHE_TAG_DIRTY

⇒ (triggers writeback some time later)

lock_page
PG_locked PG_dirty PAGECACHE_TAG_DIRTY

clear_page_dirty_for_io
PG_locked PAGECACHE_TAG_DIRTY

set_page_writeback
PG_locked PG_writeback PAGECACHE_TAG_WRITEBACK

unlock_page (wait for io)
PG_writeback PAGECACHE_TAG_WRITEBACK

end_page_writeback

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 30 / 55

dirty flag & tag - redirty examples

(a) set_page_dirty (b) set_page_dirty
lock_page lock_page
clear_page_dirty_for_io clear_page_dirty_for_io
redirty_page_for_writepage set_page_writeback
set_page_writeback redirty_page_for_writepage
unlock_page unlock_page
end_page_writeback end_page_writeback

__

(a) PG_dirty PAGECACHE_TAG_DIRTY
PG_locked PG_dirty PAGECACHE_TAG_DIRTY
PG_locked PAGECACHE_TAG_DIRTY
PG_locked PG_dirty PAGECACHE_TAG_DIRTY
PG_locked PG_dirty PAGECACHE_TAG_DIRTY PG_writeback PAGECACHE_TAG_WRITEBACK

PG_dirty PAGECACHE_TAG_DIRTY

(b) PG_dirty PAGECACHE_TAG_DIRTY
PG_locked PG_dirty PAGECACHE_TAG_DIRTY
PG_locked PAGECACHE_TAG_DIRTY
PG_locked PG_writeback PAGECACHE_TAG_WRITEBACK
PG_locked PG_dirty PAGECACHE_TAG_DIRTY PG_writeback PAGECACHE_TAG_WRITEBACK

PG_dirty PAGECACHE_TAG_DIRTY

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 31 / 55

reiserfs bug tracing

The page has both PG_dirty(D)/PAGECACHE_TAG_DIRTY(d) after being written to;
and then only PAGECACHE_TAG_DIRTY(d) remains after the file is closed.

.

.

. ..

.

.

[T0] /home/wfg# cat > /test/tiny
[T1] hi
[T2] /home/wfg#

.

.

. ..

.

.

[T1] /home/wfg# echo /test/tiny > /proc/filecache
[T1] /home/wfg# cat /proc/filecache

file /test/tiny
flags U:PG_uptodate D:PG_dirty B:PG_buffer d:PAGECACHE_TAG_DIRTY
idx len state refcnt
0 1 ___UD__Bd_ 2

[T2] /home/wfg# tail -2 /proc/filecache
idx len state refcnt
0 1 ___U___Bd_ 2

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 32 / 55

reiserfs bug tracing (cont.)

Notice the non-zero ’cancelled_write_bytes’ after /tmp/hi is copied.

.

.

. ..

.

.

[T0] /home/wfg# echo hi > /tmp/hi
[T1] /home/wfg# cp /tmp/hi /dev/stdin /test
[T2] hi
[T3] /home/wfg#

.

.

. ..

.

.

[T2] /proc/4397# cd /proc/‘pidof cp‘
[T2] /proc/4713# cat io [T3] /proc/4713# cat io

rchar: 8396 rchar: 8399
wchar: 3 wchar: 6
syscr: 20 syscr: 21
syscw: 1 syscw: 2
read_bytes: 0 read_bytes: 0
write_bytes: 20480 write_bytes: 24576
cancelled_write_bytes: 4096 cancelled_write_bytes: 4096

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 33 / 55

reiserfs bug summary

Reiserfs could accumulate dirty sub-page-size files until umount time.
They cannot be synced to disk by pdflush routines or explicit ‘sync’
commands. Only ‘umount’ can do the trick.

The direct cause is: the dirty page’s PG_dirty is wrongly _cleared_.

Call trace:
[<ffffffff8027e920>] cancel_dirty_page+0xd0/0xf0
[<ffffffff8816d470>] :reiserfs:reiserfs_cut_from_item+0x660/0x710
[<ffffffff8816d791>] :reiserfs:reiserfs_do_truncate+0x271/0x530
[<ffffffff8815872d>] :reiserfs:reiserfs_truncate_file+0xfd/0x3b0
[<ffffffff8815d3d0>] :reiserfs:reiserfs_file_release+0x1e0/0x340
[<ffffffff802a187c>] __fput+0xcc/0x1b0
[<ffffffff802a1ba6>] fput+0x16/0x20
[<ffffffff8029e676>] filp_close+0x56/0x90
[<ffffffff8029fe0d>] sys_close+0xad/0x110
[<ffffffff8020c41e>] system_call+0x7e/0x83

Fixed the bug by removing the cancel_dirty_page() call.

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 34 / 55

ext2 bug tracing

Tough task: cannot reproduce...
Wrote a kernel module for end user, do jprobes on requeue_io() to print inode info.

Get this:
inode 114019(sda7/.kde) count 2,2 size 0 pages 1
0 2 0 U____
inode 114025(sda7/cache-ibm) count 2,1 size 0 pages 1
0 2 0 U____
inode 114029(sda7/socket-ibm) count 2,3 size 0 pages 1
0 2 0 U____
inode 114017(sda7/0266584877) count 3,6 size 0 pages 1
0 2 0 U____

The .kde/cache-ibm/socket-ibm/0266584877 above are confirmed to be directories.

To reproduce:
console 1 console 2
$ mkdir a; cd a
$ touch b; rm b

$ rmdir a
_________ 100% iowait _________
$ cd ..

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 35 / 55

ext2 bug fix

writeback: clear PAGECACHE_TAG_DIRTY for truncated page in block_write_full_page()

The ‘truncated’ page in block_write_full_page() may stick for a long time.
E.g. ext2_rmdir() will set i_size to 0, and then the dir inode may hang around
because of being referenced by someone.

So clear PAGECACHE_TAG_DIRTY to prevent pdflush from retrying and iowaiting on it.

Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn>

--- linux.orig/fs/buffer.c
+++ linux/fs/buffer.c
@@ -2820,7 +2820,9 @@ int block_write_full_page(struct page *p

* freeable here, so the page does not leak.
*/
do_invalidatepage(page, 0);

+ set_page_writeback(page);
unlock_page(page);

+ end_page_writeback(page);
return 0; /* don’t care */

}

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 36 / 55

jfs bug fix

commit 29a424f28390752a4ca2349633aaacc6be494db5
Author: Dave Kleikamp <shaggy@linux.vnet.ibm.com>
Date: Thu Jan 3 13:09:33 2008 -0600

JFS: clear PAGECACHE_TAG_DIRTY for no-write pages

When JFS decides to drop a dirty metapage, it simply clears the META_dirty
bit and leave alone the PG_dirty and PAGECACHE_TAG_DIRTY bits.

When such no-write page goes to metapage_writepage(), the ‘relic’
PAGECACHE_TAG_DIRTY tag should be cleared, to prevent pdflush from
repeatedly trying to sync them. This is done through
set_page_writeback(), so call it should be called in all cases. If
no I/O is initiated, end_page_writeback() should be called immediately.

This is how __block_write_full_page() does things.

Signed-off-by: Dave Kleikamp <shaggy@linux.vnet.ibm.com>
CC: Fengguang Wu <wfg@mail.ustc.edu.cn>

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 37 / 55

game over

More buggy fs?! Let’s stop the game...

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 38 / 55

general fix

When we didn’t write back all the pages...

linux/fs/fs-writeback.c __sync_single_inode()

inode->i_state |= I_DIRTY_PAGES;
- requeue_io(inode);
+ if (wbc->nr_to_write <= 0) {
+ /*
+ * slice used up: queue for next turn
+ */
+ requeue_io(inode);
+ } else {
+ /*
+ * somehow blocked: retry later
+ */
+ redirty_tail(inode);
+ }

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 39 / 55

writeback iterations

Writeback task as 3-level loops:
.

.. ..

.

.

for all super_blocks
for all dirty inodes (expired)

for all dirty pages
sync page

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 40 / 55

root of problem: cannot de-dirty inodes in one shot

the dataset is highly dynamic
newly/repeatedly dirtied/expired inodes
newly/repeatedly dirtied pages
gone inodes/pages

inodes cannot be synced for now
locked inodes/pages/etc
io queue is congested

inodes should not be synced in one shot
large files: starvation for small files
busy files: could lead to livelock

superblocks should not be synced in one shot
fairness/livelock issues

cannot hold inode_lock for a long time
...1 exit after writing 4MB data (break if >= MAX_WRITEBACK_PAGES)
...2 take a breath
...3 re-enter loop and continue from where we left

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 41 / 55

writeback iterations in practice

The real-world writeback logic is kind of

.

.. ..

.

.

while(more io)
for a in A // iterate super_blocks

for b in B // iterate dirty inodes (expired)
for c in C // iterate dirty pages

sync, break, re-enter and continue on every 4MB

where
- cursors a,b,c should be properly saved
- sets A,B,C should remain stable in traversing

so that the iterations can
- continue from last position
- finish in bounded time

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 42 / 55

inode list iteration - model

The set, cursor and data source are:

- s_io.prev is cursor ‘b’, which remembers our position in the list;

- s_io+s_more_io forms set ‘B’, which is only updated to pull in new
expired inodes from s_dirty, after one full iteration of it is completed
and cursor ‘a’ has completed one full iteration on the superblocks.

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 43 / 55

inode list iteration - protocol

splice to s_io.tail
+---------------------+
| |

dirty expire V requeue io |
=======> s_dirty ======> s_io ============> s_more_io

^ |
| blocked, redirty |
+------------------+-----> clean

s_dirty contains expired and non-expired dirty inodes. The non-expired
ones are in time-of-dirtying(dirtied_when) order.

s_io contains expired and non-expired dirty inodes, with expired ones at
the head. Unexpired ones (at least) are in time order.

s_more_io contains dirty expired inodes which haven’t been fully written.
Ordering doesn’t matter.

- Andrew Morton
Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 44 / 55

inode list iteration - example
Suppose some 8MB dirty files Fn are to be synced. The iterations may go like this:

s_more_io s_io s_dirty
[queue_io()] [F1-F5 expire]

T0 F1,F2,F3,F4,F5 F6,F7,F8
T1 F1 F2,F3,F4,F5 F6,F7,F8
T2 F1,F2 F3,F4,F5 F6,F7,F8
T3 F1,F2,F3 F4,F5 F6,F7,F8
T4 F1,F2,F3,F4 F5 F6,F7,F8
T5 F1,F2,F3,F4,F5 F6,F7,F8

[queue_io()] [F6-F8 expire]
T6 F1,F2,F3,F4,F5,F6,F7,F8
T7 F2,F3,F4,F5,F6,F7,F8
T8 F3,F4,F5,F6,F7,F8
T9 F4,F5,F6,F7,F8
T10 F5,F6,F7,F8
T11 F6,F7,F8
T12 F6 F7,F8
T13 F6,F7 F8
T14 F6,F7,F8

[queue_io()]
T15 F6,F7,F8
T16 F7,F8
T17 F8

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 45 / 55

writeback objectives

be fair
be efficient
KISS, as always

⇒
collect jobs into big batches (sync every 5s)
once triggered, send all data into io queue AFAP
stripe files and sync in turn (will it hurt performance?)

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 46 / 55

the atime deficiency

sys_read() => file_accessed()
=> touch_atime()

.

.. ..

.

.

For every file that is read from the disk, lets do a ...
write to the disk!

And, for every file that is already cached and which we
read from the cache ... do a write to the disk!

- Ingo Molnar

note: write = update atime and mark the inode dirty

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 47 / 55

atime solutions

noatime / nodiratime
best!
no luck as default

relatime
good enough, shall not break mutt
‘could’ be default

if (atime < ctime || atime < mtime)
update atime

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 48 / 55

atime writeback improvement possibilities

more atime writeback delays

expire > 30m
s_dirty_atime --------------+

|
+--- s_io ---> writeback
|

s_dirty --------------------+
expire > 30s

cons: will hold more inodes in memory and increase umount time

piggy back atime updates - clustered writeback

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 49 / 55

ordering by location - why

http://oss.oracle.com/~mason/compilebench/makej/
Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 50 / 55

http://oss.oracle.com/~mason/compilebench/makej/

ordering by location - key

address hint: inode number

normally,
inode number is proportional to address of inode;
data blocks for inode N will be close to inode N.

or more loosely
inode N will be close to inode N+1;
data blocks for inode N will be close to inode N+1.

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 51 / 55

ordering by location - how

sweeping sync

store s_dirty inodes in a radix tree, indexed by inode number
sweep 1/5 of the inode number space in every 5s
put inodes with dirty_age > 5s to io queue

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 52 / 55

ordering by location - try it out

patchset available at
http://lkml.org/lkml/2007/8/27/45
try outs and feedbacks are warmly welcome
favorable performance numbers are the key to mainline inclusion

[PATCH 0/3] [RFC][PATCH] clustered writeback
[PATCH 1/3] writeback: introduce queue_dirty()
[PATCH 2/3] writeback: introduce dirty_volatile_interval
[PATCH 3/3] writeback: writeback clustering by inode number

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 53 / 55

http://lkml.org/lkml/2007/8/27/45

Acknowledgements

Andrew Morton
Chris Mason
David Chinner
Ingo Molnar
Ken Chen
Michael Rubin
Peter Zijlstra

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 54 / 55

Thank you!

Wu Fengguang (Intel OTC) Linux Writeback 2008 AKA kernel conference 55 / 55

