
Rate based Dirty Throttling
Wu Fengguang
<wfg@linux.intel.com>

April 17, 2011

<wfg@linux.intel.com>

Rationals

Why the complexity?

IO-less reduce XFS contentions and disk seeks
low latency capable of < 10ms pause times
smoothness maintain constant task dirty rate over time

fairness tasks progress at exactly the same rate
scalability 1000+ dd, O(1) algorithm

task IO controller endogenous
cgroup IO controller well integrated
proportional IO controller endogenous

rsync problem
how each fluctuates: vanilla Jan Wu
(large ==> small) ----- net send per second -----

| 130B| 538k| 806k|
Workload | 538k| 538k| 807k|
======== | 273k| 543k| 1081k|

| 269k| 2690k| 808k|
50 dd + 1 remote rsync | 114B| 270k| 1076k|
writing to an XFS | 114B| 270k| 676k|

114B	812k	943k
114B	808k	807k
114B	539k	1077k
168B	269k	808k
116k	807k	1082k

rsync bytes/sec | 153k| 808k| 807k|
=============== | 3230k| 543k| 1067k|

| 1344k| 269k| 819k|
vanilla 545098.791 | 130B| 808k| 1081k|
Jan 612853.130 (*) | 2150k| 808k| 808k|
Wu 891014.654 | 130B| 1347k| 808k|

114B	1888k	1078k
114B	337k	812k
114B	471k	807k

(*) need double check | 114B| 538k| 807k|
114B	808k	1076k
114B	273k	807k
246B	516k	893k
273k	292k	994k
269k	808k	807k
130B	538k	1076k
114B	808k	811k

avg 708.741 908.074

rsync findings

vanilla Jan Wu

balance_dirty_pages() pause time 0-3s 0-300ms 60-70ms
rsync throughput over Ethernet 1 +12.4% +63.5%

=⇒

Smooth and low latency writeback helps!

Fundemental tradeoffs

Inescapable IO completion fluctuations from FS/storage

Where to embody the fluctuations?

.

.. ..

.

.

(1) THRESHOLD based throttling

keep dirty pages at THRESHOLD; fluctuations go to dirty rate

.

.. ..

.

.

(2) RATE based throttling + gentle POSITION CONTROL

keep task dirty RATE stable; allow fluctuations in dirty pages

The change

Basic scheme

.dirty throttling..

.. ..

.

.

write() syscall
balance_dirty_pages(pages_dirtied)

task_ratelimit = dirty_ratelimit * pos_ratio;
pause = pages_dirtied / task_ratelimit;
sleep(pause);

.
balanced state (rate and position)..

.. ..

.

.

dirty_ratelimit aka. ‘base throttle bandwidth’
== write_bw / N
== (write IO bandwidth) / (# of dd tasks)

pos_ratio == 1.0

Principles

control pages_dirtied to get the desired pause

=⇒ low latency

stable dirty_ratelimit + gently reacting pos_ratio

=⇒ smoothness

the balanced throttle bandwidth (theory)

When started N dd, throttle each dd at

task_ratelimit = dirty_ratelimit_0 (any non-zero initial value is OK)

After 200ms, we got

dirty_bw = # of pages dirtied by app / 200ms
write_bw = # of pages written to disk / 200ms

For aggressive dirtiers, the equality holds

dirty_bw == N * task_ratelimit
== N * dirty_ratelimit_0 (1)

The balanced throttle bandwidth can be estimated by

ref_ratelimit = dirty_ratelimit_0 * write_bw / dirty_bw (2)

From (1) and (2), we get equality

ref_ratelimit == write_bw / N (3)

If the N dd’s are all throttled at ref_ratelimit, the dirty/writeback rates will match.

the balanced throttle bandwidth (theory)

ref_ratelimit estimated in 200ms!

However, real world is not perfect . . .

the balanced throttle bandwidth (practice)

ITERATIVE METHOD

ref_ratelimit is fluctuating, has estimation errors due to control lags
and write_bw errors. It naturally asks for step-by-step approximations:

dirty_ratelimit = (dirty_ratelimit * 3 + ref_ratelimit) / 4

CONDITIONAL UPDATE

There is no need to update dirty_ratelimit during a stable workload,
which only makes it susceptible to noises. So do it defensively and
update dirty_ratelimit when

- dirty pages are departing from the global/bdi goals
- dirty pages are near the upper/lower bounds of the control scope

position control

Adjust dirty rate to keep dirty pages around the desired position.

.

.. ..

.

.

pos_ratio = 1.0

// gentle negative feedback control
pos_ratio -= (nr_dirty - goal) / SCALE;
pos_ratio -= (bdi_dirty - bdi_goal) / BDI_SCALE;

// sharp boundary control
if (near global limit) scale down pos_ratio
if (bdi queue runs low) scale up pos_ratio

task_ratelimit = dirty_ratelimit * pos_ratio

position control lines

Roll it up

.on write() syscall..

.. ..

.

.

balance_dirty_pages(pages_dirtied)
{

task_ratelimit = bdi->dirty_ratelimit * bdi_position_ratio();
pause = pages_dirtied / task_ratelimit;
sleep(pause);

}

.on every 200ms..

.. ..

.

.

bdi_update_dirty_ratelimit()
{

bw = bdi->dirty_ratelimit;
ref_bw = bw * bdi_position_ratio() * write_bw / dirty_bw;

if (dirty pages unbalanced)
bdi->dirty_ratelimit = (bw * 3 + ref_bw) / 4;

}

Implementation

mm/page-writeback.c
799 insertions(+), 196 deletions(-)

600+ more lines
200+ dedicated for smoothing/filtering

.

.. ..

.

.

smooth and low latency
scale to 1000+ dd
heavily tested and ready for use
future proof

per-task and per-cgroup IO controllers
bandwidth and proportional IO controllers

Case Studies

pause time: 0-2500 ms (legacy kernel)

xfs, 8 dd, 4G mem, 2.6.38-rc7

pause time: 0-2500 ms (Jan, JBOD)

xfs, 10 HDD JBOD, 32 dd on each disk, 6G mem, 2.6.38-rc8-jan-bdp+

pause time: 50ms

balance_dirty_pages() do sleeps in a for(;;) loop
pause is the pause time in current loop
paused is the accumulated pause times in previous loops

This graph: the task pauses for 45-50ms on every 57 pages dirtied.

xfs, 10 dd, 4G mem, 2.6.39-rc2-wu-dt7+

pause time: 5ms

To reduce wakeups and CPU overheads, max_pause() has a policy to
increase the target pause time on growing number of dirtier tasks.

It can actually do lower pause times at will, eg. 5ms:

btrfs, 10 dd, 4G mem, 5ms hard coded target pause time

negative pause time

pause < 0 indicate delays outside of balance_dirty_pages()
user space think time, or
write_begin() etc. FS delays

This graph: each < 500ms ext4 delay shows up as a train of negative
pause times; > 500ms delays are not compensated, so are single dots.

ext4, 10 dd, 4G mem, 2.6.39-rc2-wu-dt7+

smoothness: bumping ahead (legacy kernel)

xfs, 8 dd, 4G mem, 2.6.38-rc7

smoothness: straight lines

3 superposed lines

⇒ excellent smoothness and fairness among the 3 dd tasks

xfs, 10 dd, 4G mem, 2.6.39-rc2-wu-dt7+

base bandwidth stability

The smoothness originates from the stability of base bandwidth, which
won’t change as long as being surrounded by the ref bandwidth, avg
ref bandwidth and pos bandwidth.

ext4, 10 SSD JBOD, 100 dd on each disk, 64G mem, 2.6.39-rc2-wu-dt7+

base bandwidth reliability

It’s a stable and reliable system. If ref bw got systematic errors and drive
up/down base bw, dirty pages will go up/down the goal and pos bw
will in turn go for the opposite side and stop base bw from drifting away.

ext4, 10 SSD JBOD, 100 dd on each disk, 64G mem, 2.6.39-rc2-wu-dt7+

base bandwidth reliability (example)

btrfs, 1 dd, 3G mem, 2.6.39-rc3-wu-dt7+: 1kb reads lead to 4 times over-counted dirtied pages and ref_bw estimation errors

base bandwidth benefits

...1 provides per-task bandwidth IO controllers for free

...2 provides per-task proportional IO controllers for free

...3 supports per-task policies such as curbing seeky dirtiers more

...4 per-cgroup IO controllers are demonstrated to be simple

...5 lockless: the 200ms updates could be moved to each flusher

...6 adaptiveness: when some task/cgroup is ratelimited by user,
the bdi will auto adapt to higher balanced dirty_ratelimit for
other tasks.

...7 bumpy workloads: works well on NFS/JBOD; extremely bumpy
workloads will be guarded by the boundary control regions.

bumpy NFS: bursty IO completions

unmodified NFS, 1 dd, 3G mem, 2.6.39-rc3-wu-dt7+

bumpy NFS: 80ms pause

unmodified NFS, 1 dd, 3G mem, 2.6.39-rc3-wu-dt7+

bumpy NFS: 30s pause (legacy and Jan’s kernel)

unmodified NFS, 1 dd, 3G mem, 2.6.38-rc7

smooth writeback on JBOD

ext4, 10 SSD JBOD, 100 dd on each disk, 64G mem, 2.6.39-rc2-wu-dt7+

fluctuations: 4G ram

No free lunch. The smooth rates are traded by allowing more fluctuations
in the number of dirty pages.

Amazingly, increased number of dd tasks hardly leads to increased
fluctuations!

xfs, 100 dd, 4G mem, 2.6.39-rc2-wu-dt7+

fluctuations: 1/10 dirty mem

The fluctuation range is typically within 1s worth of disk writes.

The less memory (or dirty ratio), the more relative fluctuations.

ext4, 10 dd, 3G mem, 2% dirty ratio, 2.6.39-rc3-wu-dt7+

over-dirtying problem (NFS)

- up to 20MB gaps between global/bdi dirty pages
- however, (bdi goal == global goal)!

NFS occupies quite some dirty pages without lowering the local disk’s
bdi dirty goal. This pushes global dirty pages high.

xfs, 100 dd, 3G mem, 2% dirty ratio, 2.6.39-rc2-wu-dt7+

over-dirtying problem (UKEY)

UKEY accumulated much more dirty pages than its bdi goal before it
got throttled on (nr_dirty > (dirty_thresh + background_thresh) / 2).

This pushes global dirty pages high before the UKEY’s dirty pages
drop to normal after 200s.

xfs, 1 dd to UKEY + 1 dd to HDD, 3G mem, 2.6.39-rc2-wu-dt7+

over-dirtying problem (solution)

Setup a brake area under the hard dirty limit. It’s a leeway that can
guarantee to balance the pressures created by ‘dirty pages excessively
exceeding bdi goal’, in the cases of

dirty pages accumulated at free-run time on slow devices

sudden storage break down / slow down

sudden workload surges

Note: it’s not a new problem. Legacy kernels will be globally hard throttled
and suffer more . . .

rampup time: 200s (vanilla and Jan’s kernel)

xfs, 8 dd, 4G mem, 2.6.38-rc7

rampup time: 2s

The dirty pages took 200s to rampup, waiting for the bdi dirty proportion
to build up. That’s too much slow, so it’s made faster by 4 times.

Moreover, bdi goal’s rampup time is less relevant now. base bandwidth
will be updated only when dirty pages are departing from the goal.
This has the nice side effect of keeping dirty pages to the goal.

xfs, 10 dd, 4G mem, 2.6.39-rc2-wu-dt7+

Integrated cgroup IO controller

Demonstrated by 60 lines of code! Basic ideas:

...1 maintain per-cgroup base bandwidth (can reuse code)

...2 do simple cgroup position control to fix leaks (optional enhancement)

.Merits..

.. ..

.

.

per-bdi nature, works on NFS and Software RAID
no delayed response (working at the right layer)
no page tracking, hence decoupled from memcg
no interactions with FS and CFQ
get proportional IO controller for free
reuse/inherit all the base facilities/functions

Thank you!

